An application of the Choquet theorem to the study of randomly-superinvariant measures

Given a real valued random variable \(\Theta\) we consider Borel measures \(\mu\) on \(\mathcal{B}(\mathbb{R})\), which satisfy the inequality \(\mu(B) \geq E\mu(B-\Theta)\) (\(B \in \mathcal{B}(\mathbb{R})\)) (or the integral inequality \(\mu(B) \geq \int_{-\infty}^{+\infty} \mu(B-h)\gamma (dh)\))...

Full description

Bibliographic Details
Main Author: Teresa Rajba
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2012-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol32/2/art/opuscula_math_3223.pdf

Similar Items