DE-Net: Deep Encoding Network for Building Extraction from High-Resolution Remote Sensing Imagery

Deep convolutional neural networks have promoted significant progress in building extraction from high-resolution remote sensing imagery. Although most of such work focuses on modifying existing image segmentation networks in computer vision, we propose a new network in this paper, Deep Encoding Net...

Full description

Bibliographic Details
Main Authors: Hao Liu, Jiancheng Luo, Bo Huang, Xiaodong Hu, Yingwei Sun, Yingpin Yang, Nan Xu, Nan Zhou
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/20/2380
Description
Summary:Deep convolutional neural networks have promoted significant progress in building extraction from high-resolution remote sensing imagery. Although most of such work focuses on modifying existing image segmentation networks in computer vision, we propose a new network in this paper, Deep Encoding Network (DE-Net), that is designed for the very problem based on many lately introduced techniques in image segmentation. Four modules are used to construct DE-Net: the inception-style downsampling modules combining a striding convolution layer and a max-pooling layer, the encoding modules comprising six linear residual blocks with a scaled exponential linear unit (SELU) activation function, the compressing modules reducing the feature channels, and a densely upsampling module that enables the network to encode spatial information inside feature maps. Thus, DE-Net achieves state-of-the-art performance on the WHU Building Dataset in recall, F1-Score, and intersection over union (IoU) metrics without pre-training. It also outperformed several segmentation networks in our self-built Suzhou Satellite Building Dataset. The experimental results validate the effectiveness of DE-Net on building extraction from aerial imagery and satellite imagery. It also suggests that given enough training data, designing and training a network from scratch may excel fine-tuning models pre-trained on datasets unrelated to building extraction.
ISSN:2072-4292