Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space

In this paper, we establish some existence results of weak solutions and pseudo-solutions for the initial value problem of the arbitrary (fractional) orders differential equation \[ %\frac{dx}{dt}~=~ f(t,D^\gamma x(t)),~\gamma \in (0,1), ~~t~\in~I=[0,T] %\] \begin{eqnarray*}\label{2} \hspace{-3cm}\f...

Full description

Bibliographic Details
Main Authors: H. H. G. Hashem, A. M. A. El-Sayed, Maha A. Alenizi
Format: Article
Language:English
Published: AIMS Press 2021-10-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2021004/fulltext.html
id doaj-10c0713307bd45e2866d956448251136
record_format Article
spelling doaj-10c0713307bd45e2866d9564482511362020-11-25T04:00:46ZengAIMS PressAIMS Mathematics2473-69882021-10-0161526510.3934/math.2021004Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach spaceH. H. G. Hashem0A. M. A. El-Sayed1Maha A. Alenizi21 Department of mathematics, College of Science, Qassim University, P.O. Box 6644 Buraidah 51452, Saudi Arabia2 Faculty of Science, Alexandria University, Alexandria, Egypt1 Department of mathematics, College of Science, Qassim University, P.O. Box 6644 Buraidah 51452, Saudi ArabiaIn this paper, we establish some existence results of weak solutions and pseudo-solutions for the initial value problem of the arbitrary (fractional) orders differential equation \[ %\frac{dx}{dt}~=~ f(t,D^\gamma x(t)),~\gamma \in (0,1), ~~t~\in~I=[0,T] %\] \begin{eqnarray*}\label{2} \hspace{-3cm}\frac{dx}{dt}&=& f(t,D^\gamma x(t)),~\gamma \in (0,1), ~~t~\in~[0,T]=\mathbb{I}\nonumber\\ &&\\ x(0)&=&x_0. \nonumber \end{eqnarray*} in nonreflexive Banach spaces $~E,~$ where $~D^\gamma x(\cdot)~$ is a fractional %pseudo- derivative of the function $~x(\cdot):\mathbb{I} \rightarrow E~$ of order $~\gamma.~$ The function $~f(t,x):\mathbb{I}\times E \rightarrow E~$ will be assumed to be weakly sequentially continuous in $x~$ for each $~t\in \mathbb{I}~$ and Pettis integrable in $~t~$ on $~\mathbb{I}~$ for each $~x\in C[\mathbb{I},E].~$ Also, a weak noncompactness type condition (expressed in terms of measure of noncompactness) will be imposed.https://www.aimspress.com/article/10.3934/math.2021004/fulltext.htmlmeasure of weak noncompactnessweakly continuous solutionpseudo-solutionweakly relatively compactfractional pettis integral
collection DOAJ
language English
format Article
sources DOAJ
author H. H. G. Hashem
A. M. A. El-Sayed
Maha A. Alenizi
spellingShingle H. H. G. Hashem
A. M. A. El-Sayed
Maha A. Alenizi
Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space
AIMS Mathematics
measure of weak noncompactness
weakly continuous solution
pseudo-solution
weakly relatively compact
fractional pettis integral
author_facet H. H. G. Hashem
A. M. A. El-Sayed
Maha A. Alenizi
author_sort H. H. G. Hashem
title Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space
title_short Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space
title_full Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space
title_fullStr Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space
title_full_unstemmed Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space
title_sort weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive banach space
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2021-10-01
description In this paper, we establish some existence results of weak solutions and pseudo-solutions for the initial value problem of the arbitrary (fractional) orders differential equation \[ %\frac{dx}{dt}~=~ f(t,D^\gamma x(t)),~\gamma \in (0,1), ~~t~\in~I=[0,T] %\] \begin{eqnarray*}\label{2} \hspace{-3cm}\frac{dx}{dt}&=& f(t,D^\gamma x(t)),~\gamma \in (0,1), ~~t~\in~[0,T]=\mathbb{I}\nonumber\\ &&\\ x(0)&=&x_0. \nonumber \end{eqnarray*} in nonreflexive Banach spaces $~E,~$ where $~D^\gamma x(\cdot)~$ is a fractional %pseudo- derivative of the function $~x(\cdot):\mathbb{I} \rightarrow E~$ of order $~\gamma.~$ The function $~f(t,x):\mathbb{I}\times E \rightarrow E~$ will be assumed to be weakly sequentially continuous in $x~$ for each $~t\in \mathbb{I}~$ and Pettis integrable in $~t~$ on $~\mathbb{I}~$ for each $~x\in C[\mathbb{I},E].~$ Also, a weak noncompactness type condition (expressed in terms of measure of noncompactness) will be imposed.
topic measure of weak noncompactness
weakly continuous solution
pseudo-solution
weakly relatively compact
fractional pettis integral
url https://www.aimspress.com/article/10.3934/math.2021004/fulltext.html
work_keys_str_mv AT hhghashem weakandpseudosolutionsofanarbitraryfractionalordersdifferentialequationinnonreflexivebanachspace
AT amaelsayed weakandpseudosolutionsofanarbitraryfractionalordersdifferentialequationinnonreflexivebanachspace
AT mahaaalenizi weakandpseudosolutionsofanarbitraryfractionalordersdifferentialequationinnonreflexivebanachspace
_version_ 1724449309926096896