Development of comprehensive unattended child warning and feedback system in vehicle

The cases of children being trapped and suffocated in unattended vehicle keep increasing even though the awareness campaign on the safety of children in non-moving vehicle were carried out by government. Various methods were introduced by researchers to overcome this issue but yet to be effective. A...

Full description

Bibliographic Details
Main Authors: Sulaiman Norizam, Ghazali Kamarul Hawari, Jadin Mohd Shawal, Abdul Hadi Amran, Najib Muhammad Sharfi, Mohd Zain Mohd Salmizan, Abdul Halim Fatimah, Mohd Daud Suhaimi, Zahed Nurdiyana, Abdullah Abdul Adam
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20179001008
Description
Summary:The cases of children being trapped and suffocated in unattended vehicle keep increasing even though the awareness campaign on the safety of children in non-moving vehicle were carried out by government. Various methods were introduced by researchers to overcome this issue but yet to be effective. Among them were the usage of capacitive sensor, microwave sensor, pressure sensor and image sensor where most of the techniques or systems were applied on the child’s seat to detect the presence of baby or infant. Thus, this research is carried out to provide a comprehensive and effective detection system to detect the presence of children including infant in unattended vehicle by using the combination of human physiological signals (voice and body odor) detectors with the temperature and motion sensors. Here, once the proposed system recognizes any signals that generated from voice, odor, motion and temperature detectors in vehicle’s cabin, the system then will provide effective feedback system by sending short message to the parents first. If no response received in the specified allocation time, the system then will activate the vehicle’s horn system. Finally, the system will lower down the vehicle’s window to release the toxic gas and reduce the cabin temperature. The system is in prototyping stage where every design component was evaluated individually. Besides, the overall system was successfully tested where the detection and feedback system follow the instruction given by the microcontroller.
ISSN:2261-236X