Suitability of GnRH Receptors for Targeted Photodynamic Therapy in Head and Neck Cancers

Head and neck squamous cell carcinomas (HNSCC) have a high mortality rate, although several potential therapeutic targets have already been identified. Gonadotropin-releasing hormone receptor (GnRH-R) expression is less studied in head and neck cancers, hence, we investigated the therapeutic relevan...

Full description

Bibliographic Details
Main Authors: Lilla Pethő, József Murányi, Kinga Pénzes, Bianka Gurbi, Diána Brauswetter, Gábor Halmos, Gabriella Csík, Gábor Mező
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/20/20/5027
Description
Summary:Head and neck squamous cell carcinomas (HNSCC) have a high mortality rate, although several potential therapeutic targets have already been identified. Gonadotropin-releasing hormone receptor (GnRH-R) expression is less studied in head and neck cancers, hence, we investigated the therapeutic relevance of GnRH-R targeting in HNSCC patients. Our results indicate that half of the patient-derived samples showed high GnRH-R expression, which was associated with worse prognosis, making this receptor a promising target for GnRH-based drug delivery. Photodynamic therapy is a clinically approved treatment for HNSCC, and the efficacy and selectivity may be enhanced by the covalent conjugation of the photosensitizer to a GnRH-R targeting peptide. Several native ligands, gonadotropin-releasing hormone (GnRH) isoforms, are known to target GnRH-R effectively. Therefore, different <sup>4</sup>Lys(Bu) modified GnRH analogs were designed and conjugated to protoporphyrin IX. The receptor binding potency of the novel conjugates was measured on human pituitary and human prostate cancer cells, indicating only slightly lower GnRH-R affinity than the peptides. The <i>in vitro</i> cell viability inhibition was tested on Detroit-562 human pharyngeal carcinoma cells that express GnRH-R in high levels, and the results showed that all conjugates were more effective than the free protoporphyrin IX.
ISSN:1422-0067