Spectral Output of Homogeneously Broadened Semiconductor Lasers

Gain, spontaneous emission, and reflectance play important roles in setting the spectral output of homogeneously broadened lasers, such as semiconductor diode lasers. This paper provides a restricted-in-scope review of the steady-state spectral properties of semiconductor diode lasers. Analytic but...

Full description

Bibliographic Details
Main Author: Daniel T. Cassidy
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/8/8/340
Description
Summary:Gain, spontaneous emission, and reflectance play important roles in setting the spectral output of homogeneously broadened lasers, such as semiconductor diode lasers. This paper provides a restricted-in-scope review of the steady-state spectral properties of semiconductor diode lasers. Analytic but transcendental solutions for a simplified set of equations for propagation of modes through a homogeneously broadened gain section are used to create a Fabry–Pérot model of a diode laser. This homogeneously broadened Fabry–Pérot model is used to explain the spectral output of diode lasers without the need for guiding-enhanced capture of spontaneous emission, population beating, or non-linear interactions. It is shown that the amount of spontaneous emission and resonant enhancement of the reflectance-gain (RG) product as embodied in the presented model explains the observed spectral output. The resonant enhancement is caused by intentional and unintentional internal scattering and external feedback.
ISSN:2304-6732