Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragil...

Full description

Bibliographic Details
Main Authors: Seunghyun Eem, Daegi Hahm
Format: Article
Language:English
Published: Elsevier 2019-04-01
Series:Nuclear Engineering and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S173857331830531X
Description
Summary:Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments. Keywords: Seismic isolation, Lead rubber bearing, Nonlinear numerical model, Isolation system, Nuclear power plants, Seismic response analysis
ISSN:1738-5733