Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations

In this paper we give sufficient conditions on $k\in L^1(\mathbb{R})$ and the positive measures $\mu$, $\nu$ such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo-almost automorphic) function spaces are invariant by the convolution product $\zeta f=k\ast f$. We pro...

Full description

Bibliographic Details
Main Authors: David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè
Format: Article
Language:English
Published: Universidad de La Frontera 2021-04-01
Series:Cubo
Subjects:
Online Access:http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2598/2052
id doaj-11fbf7aade6f4b709dd5edf993ec40fd
record_format Article
spelling doaj-11fbf7aade6f4b709dd5edf993ec40fd2021-06-14T19:17:06ZengUniversidad de La FronteraCubo0716-77760719-06462021-04-01231638510.4067/S0719-06462021000100063Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equationsDavid Békollè0Khalil Ezzinbi1Samir Fatajou2https://orcid.org/0000-0001-5959-098XDuplex Elvis Houpa Danga3https://orcid.org/0000-0003-4779-5800Fritz Mbounja Béssémè4https://orcid.org/0000-0002-6052-6755Department of Mathematics, Faculty of Science, University of Ngaoundéré P.O. Box 454, Ngaoundéré, Cameroon.Department of Mathematics, Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390 Marrakesh, Morocco.Department of Mathematics, Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390 Marrakesh, Morocco.Department of Mathematics, Faculty of Science, University of Ngaoundéré P.O. Box 454, Ngaoundéré, Cameroon.Department of Mines and Geology, School of Geology and Mining Engineering, University of Ngaoundéré P.O. Box 454, Ngaoundéré, Cameroon.In this paper we give sufficient conditions on $k\in L^1(\mathbb{R})$ and the positive measures $\mu$, $\nu$ such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo-almost automorphic) function spaces are invariant by the convolution product $\zeta f=k\ast f$. We provide an appropriate example to illustrate our convolution results. As a consequence, we study under Acquistapace-Terreni conditions and exponential dichotomy, the existence and uniqueness of $\left( \mu,\nu\right)$- pseudo-almost periodic (respectively, $\left( \mu,\nu\right)$- pseudo-almost automorphic) solutions to some nonautonomous partial evolution equations in Banach spaces like neutral systems.http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2598/2052measure theoryμ-ν-ergodicμ-ν -pseudo almost periodic and automorphic functionsevolution familiesnonautonomous equationsneutral systems
collection DOAJ
language English
format Article
sources DOAJ
author David Békollè
Khalil Ezzinbi
Samir Fatajou
Duplex Elvis Houpa Danga
Fritz Mbounja Béssémè
spellingShingle David Békollè
Khalil Ezzinbi
Samir Fatajou
Duplex Elvis Houpa Danga
Fritz Mbounja Béssémè
Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
Cubo
measure theory
μ-ν-ergodic
μ-ν -pseudo almost periodic and automorphic functions
evolution families
nonautonomous equations
neutral systems
author_facet David Békollè
Khalil Ezzinbi
Samir Fatajou
Duplex Elvis Houpa Danga
Fritz Mbounja Béssémè
author_sort David Békollè
title Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
title_short Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
title_full Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
title_fullStr Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
title_full_unstemmed Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
title_sort convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
publisher Universidad de La Frontera
series Cubo
issn 0716-7776
0719-0646
publishDate 2021-04-01
description In this paper we give sufficient conditions on $k\in L^1(\mathbb{R})$ and the positive measures $\mu$, $\nu$ such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo-almost automorphic) function spaces are invariant by the convolution product $\zeta f=k\ast f$. We provide an appropriate example to illustrate our convolution results. As a consequence, we study under Acquistapace-Terreni conditions and exponential dichotomy, the existence and uniqueness of $\left( \mu,\nu\right)$- pseudo-almost periodic (respectively, $\left( \mu,\nu\right)$- pseudo-almost automorphic) solutions to some nonautonomous partial evolution equations in Banach spaces like neutral systems.
topic measure theory
μ-ν-ergodic
μ-ν -pseudo almost periodic and automorphic functions
evolution families
nonautonomous equations
neutral systems
url http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2598/2052
work_keys_str_mv AT davidbekolle convolutionsinmnpseudoalmostperiodicandmnpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT khalilezzinbi convolutionsinmnpseudoalmostperiodicandmnpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT samirfatajou convolutionsinmnpseudoalmostperiodicandmnpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT duplexelvishoupadanga convolutionsinmnpseudoalmostperiodicandmnpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT fritzmbounjabesseme convolutionsinmnpseudoalmostperiodicandmnpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
_version_ 1721377999575580672