Activation of the Constitutive Androstane Receptor Inhibits Leukocyte Adhesiveness to Dysfunctional Endothelium

Leukocyte cell recruitment into the vascular subendothelium constitutes an early event in the atherogenic process. As the effect of the constitutive androstane receptor (CAR) on leukocyte recruitment and endothelial dysfunction is poorly understood, this study investigated whether the role of CAR ac...

Full description

Bibliographic Details
Main Authors: Mireia López-Riera, Rebeca Ortega, Luisa Hueso, María Carmen Montesinos, Mari Carmen Gomez-Cabrera, María Jesús Sanz, José T. Real, Laura Piqueras
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/17/9267
Description
Summary:Leukocyte cell recruitment into the vascular subendothelium constitutes an early event in the atherogenic process. As the effect of the constitutive androstane receptor (CAR) on leukocyte recruitment and endothelial dysfunction is poorly understood, this study investigated whether the role of CAR activation can affect this response and the underlying mechanisms involved. Under physiological flow conditions, TNFα-induced endothelial adhesion of human leukocyte cells was concentration-dependently inhibited by preincubation of human umbilical arterial endothelial cells with the selective human CAR ligand CITCO. CAR agonism also prevented TNFα induced VCAM-1 expression, as well as MCP-1/CCL-2 and RANTES/CCL-5 release in endothelial cells. Suppression of CAR expression with a small interfering RNA abrogated the inhibitory effects of CITCO on these responses. Furthermore, CITCO increased interaction of CAR with Retinoid X Receptor (RXR) and reduced TNFα-induced p38-MAPK/NF-κB activation. In vivo, using intravital microscopy in the mouse cremasteric microcirculation treatment with the selective mouse CAR ligand TCPOBOP inhibited TNFα-induced leukocyte rolling flux, adhesion, and emigration and decreased VCAM-1 in endothelium. These results reveal that CAR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps in the leukocyte recruitment cascade. Therefore, CAR agonists may constitute a new therapeutic tool in controlling cardiovascular disease-associated inflammatory processes.
ISSN:1661-6596
1422-0067