Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults

Though lung sounds auscultation is important for the diagnosis and monitoring of lung diseases, the spectral characteristics of lung sounds have not been fully understood. This study compared the spectral characteristics of lung sounds between the right and left lungs and between healthy male and fe...

Full description

Bibliographic Details
Main Authors: Jang-Zern Tsai, Ming-Lang Chang, Jiun-Yue Yang, Dar Kuo, Ching-Hsiung Lin, Cheng-Deng Kuo
Format: Article
Language:English
Published: MDPI AG 2017-06-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/17/6/1323
id doaj-122d86ace18f42aa816e8d25f902201b
record_format Article
spelling doaj-122d86ace18f42aa816e8d25f902201b2020-11-24T22:21:49ZengMDPI AGSensors1424-82202017-06-01176132310.3390/s17061323s17061323Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young AdultsJang-Zern Tsai0Ming-Lang Chang1Jiun-Yue Yang2Dar Kuo3Ching-Hsiung Lin4Cheng-Deng Kuo5Department of Electrical Engineering, National Central University, Zhongli, Taiyuan 320, TaiwanDepartment of Electrical Engineering, National Central University, Zhongli, Taiyuan 320, TaiwanDepartment of Electrical Engineering, National Central University, Zhongli, Taiyuan 320, TaiwanMt. San Antonio College, Walnut, CA 91789, USADepartment of Respiratory Care, College of Health Sciences, Chang Jung Christian University, Tainan 711, TaiwanDivision of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, TaiwanThough lung sounds auscultation is important for the diagnosis and monitoring of lung diseases, the spectral characteristics of lung sounds have not been fully understood. This study compared the spectral characteristics of lung sounds between the right and left lungs and between healthy male and female subjects using a dual-channel auscultation system. Forty-two subjects aged 18–22 years without smoking habits and any known pulmonary diseases participated in this study. The lung sounds were recorded from seven pairs of auscultation sites on the chest wall simultaneously. We found that in four out of seven auscultation pairs, the lung sounds from the left lung had a higher total power (PT) than those from the right lung. The PT of male subjects was higher than that of female ones in most auscultation pairs. The ratio of inspiration power to expiration power (RI/E) of lung sounds from the right lung was greater than that from the left lung at auscultation pairs on the anterior chest wall, while this phenomenon was reversed at auscultation pairs on the posterior chest wall in combined subjects, and similarly in both male and female subjects. Though the frequency corresponding to maximum power density of lung sounds (FMPD) from the left and right lungs was not significantly different, the frequency that equally divided the power spectrum of lung sounds (F50) from the left lung was significantly smaller than that from the right lung at auscultation site on the anterior and lateral chest walls, while it was significantly larger than that of from the right lung at auscultation site on the posterior chest walls. In conclusion, significant differences in the PT, FMPD, F50, and RI/E between the left and right lungs at some auscultation pairs were observed by using a dual-channel auscultation system in this study. Structural differences between the left and the right lungs, between the female and male subjects, and between anterior and posterior lungs might account for the observed differences in the spectral characteristics of lung sounds. The dual-channel auscultation system might be useful for future development of digital stethoscopes and power spectral analysis of lung sounds in patients with various kinds of cardiopulmonary diseases.http://www.mdpi.com/1424-8220/17/6/1323auscultationlung soundsstethoscopepower spectrumdual-channel
collection DOAJ
language English
format Article
sources DOAJ
author Jang-Zern Tsai
Ming-Lang Chang
Jiun-Yue Yang
Dar Kuo
Ching-Hsiung Lin
Cheng-Deng Kuo
spellingShingle Jang-Zern Tsai
Ming-Lang Chang
Jiun-Yue Yang
Dar Kuo
Ching-Hsiung Lin
Cheng-Deng Kuo
Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults
Sensors
auscultation
lung sounds
stethoscope
power spectrum
dual-channel
author_facet Jang-Zern Tsai
Ming-Lang Chang
Jiun-Yue Yang
Dar Kuo
Ching-Hsiung Lin
Cheng-Deng Kuo
author_sort Jang-Zern Tsai
title Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults
title_short Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults
title_full Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults
title_fullStr Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults
title_full_unstemmed Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults
title_sort left–right asymmetry in spectral characteristics of lung sounds detected using a dual-channel auscultation system in healthy young adults
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2017-06-01
description Though lung sounds auscultation is important for the diagnosis and monitoring of lung diseases, the spectral characteristics of lung sounds have not been fully understood. This study compared the spectral characteristics of lung sounds between the right and left lungs and between healthy male and female subjects using a dual-channel auscultation system. Forty-two subjects aged 18–22 years without smoking habits and any known pulmonary diseases participated in this study. The lung sounds were recorded from seven pairs of auscultation sites on the chest wall simultaneously. We found that in four out of seven auscultation pairs, the lung sounds from the left lung had a higher total power (PT) than those from the right lung. The PT of male subjects was higher than that of female ones in most auscultation pairs. The ratio of inspiration power to expiration power (RI/E) of lung sounds from the right lung was greater than that from the left lung at auscultation pairs on the anterior chest wall, while this phenomenon was reversed at auscultation pairs on the posterior chest wall in combined subjects, and similarly in both male and female subjects. Though the frequency corresponding to maximum power density of lung sounds (FMPD) from the left and right lungs was not significantly different, the frequency that equally divided the power spectrum of lung sounds (F50) from the left lung was significantly smaller than that from the right lung at auscultation site on the anterior and lateral chest walls, while it was significantly larger than that of from the right lung at auscultation site on the posterior chest walls. In conclusion, significant differences in the PT, FMPD, F50, and RI/E between the left and right lungs at some auscultation pairs were observed by using a dual-channel auscultation system in this study. Structural differences between the left and the right lungs, between the female and male subjects, and between anterior and posterior lungs might account for the observed differences in the spectral characteristics of lung sounds. The dual-channel auscultation system might be useful for future development of digital stethoscopes and power spectral analysis of lung sounds in patients with various kinds of cardiopulmonary diseases.
topic auscultation
lung sounds
stethoscope
power spectrum
dual-channel
url http://www.mdpi.com/1424-8220/17/6/1323
work_keys_str_mv AT jangzerntsai leftrightasymmetryinspectralcharacteristicsoflungsoundsdetectedusingadualchannelauscultationsysteminhealthyyoungadults
AT minglangchang leftrightasymmetryinspectralcharacteristicsoflungsoundsdetectedusingadualchannelauscultationsysteminhealthyyoungadults
AT jiunyueyang leftrightasymmetryinspectralcharacteristicsoflungsoundsdetectedusingadualchannelauscultationsysteminhealthyyoungadults
AT darkuo leftrightasymmetryinspectralcharacteristicsoflungsoundsdetectedusingadualchannelauscultationsysteminhealthyyoungadults
AT chinghsiunglin leftrightasymmetryinspectralcharacteristicsoflungsoundsdetectedusingadualchannelauscultationsysteminhealthyyoungadults
AT chengdengkuo leftrightasymmetryinspectralcharacteristicsoflungsoundsdetectedusingadualchannelauscultationsysteminhealthyyoungadults
_version_ 1725769593289441280