Liposomes derived from Mycobacterium smegmatis promote immune activation of mice bone marrow-derived dendritic cells

Background: Tuberculosis (TB) is the leading cause of mortality due to infectious diseases. The development of new generation vaccines against TB is of paramount importance for the control of the disease. In previous studies, liposomes obtained from lipids of Mycobacterium smegmatis (LMs) demonstrat...

Full description

Bibliographic Details
Main Authors: Nur Ellene Mat Luwi, Ramlah Kadir, Rohimah Mohamud, Maria de los A Garcia-Santana, Reynaldo Acevedo, Maria E Sarmiento, Mohd Nor Norazmi, Armando Acosta
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2020-01-01
Series:International Journal of Mycobacteriology
Subjects:
Online Access:http://www.ijmyco.org/article.asp?issn=2212-5531;year=2020;volume=9;issue=3;spage=261;epage=267;aulast=Mat
Description
Summary:Background: Tuberculosis (TB) is the leading cause of mortality due to infectious diseases. The development of new generation vaccines against TB is of paramount importance for the control of the disease. In previous studies, liposomes obtained from lipids of Mycobacterium smegmatis (LMs) demonstrated their immunogenicity and protective capacity against Mycobacterium tuberculosis in mice. To characterize the immunomodulatory capacity of this experimental vaccine candidate, in the current study, the stimulatory capacity of LMs was determined on bone marrow-derived dendritic cells (BMDCs) from mice. Methods: LMs were obtained and incubated with mature BMDCs. The internalization of LMs by BMDCs was studied by confocal microscopy, and the LMs immune-stimulatory capacity was determined by the expression of surface molecules (CD86 and MHCII) and the cytokine production (interleukin [IL]-12, interferon-Υ, tumor necrosis factor-α, and IL-10) 24 h after exposure to LMs. Results: The interaction of LMs with BMDCs and its internalization was demonstrated as well as the immune activation of BMDCs, characterized by the increased expression of CD86 and the production of IL-12. The LMs internalization and immune activation of BMDCs were blocked in the presence of cytochalasin, filipin III and chlorpromazine, which demonstrated that internalization of LMs by BMDCs is a key process for the LMs induced immune activation of BMDCs. Conclusions: The results obtained support the further evaluation of LMs as a mycobacterial vaccine, adjuvant, and in immunotherapy.
ISSN:2212-5531
2212-554X