Thalamic diaschisis following perinatal stroke is associated with clinical disability

Background: Perinatal stroke causes most hemiparetic cerebral palsy and leads to lifelong disability. Understanding developmental neuroplasticity following early stroke is increasingly translated into novel therapies. Diaschisis refers to alterations brain structures remote from, but connected to, s...

Full description

Bibliographic Details
Main Authors: Brandon T. Craig, Helen L. Carlson, Adam Kirton
Format: Article
Language:English
Published: Elsevier 2019-01-01
Series:NeuroImage: Clinical
Online Access:http://www.sciencedirect.com/science/article/pii/S2213158219300105
Description
Summary:Background: Perinatal stroke causes most hemiparetic cerebral palsy and leads to lifelong disability. Understanding developmental neuroplasticity following early stroke is increasingly translated into novel therapies. Diaschisis refers to alterations brain structures remote from, but connected to, stroke lesions. Ipsilesional thalamic diaschisis has been described following adult stroke but has not been investigated in perinatal stroke. We hypothesized that thalamic diaschisis occurs in perinatal stroke and its degree would be inversely correlated with clinical motor function. Methods: Population-based, controlled cohort study. Participants were children (<19 years) with unilateral perinatal stroke (arterial ischemic stroke [AIS] or periventricular venous infarction [PVI]), anatomical magnetic resonance imaging (MRI) >6 months of age, symptomatic hemiparetic cerebral palsy, and no additional neurologic disorders. Typically developing controls had comparable age and gender proportions. T1-weighted anatomical scans were parcellated into 99 regions of interest followed by generation of regional volumes. The primary outcome was thalamic volume expressed as ipsilesional (ILTV), contralesional (CLTV) and thalamic ratio (CLTV/ILTV). Standardized clinical motor assessments were correlated with thalamic volume metrics. Results: Fifty-nine participants (12.9 years old ±4.0 years, 46% female) included 20 AIS, 11 PVI, and 28 controls. ILTV was reduced in both AIS and PVI compared to controls (p < .001, p = .029, respectively). Ipsilesional thalamic diaschisis was not associated with clinical motor function. However, CLTV was significantly larger in AIS compared to both controls and PVI (p = .005, p < .001, respectively). CLTV was inversely correlated with all four clinical motor assessments (all p < .003). Conclusion: Bilateral thalamic volume changes occur after perinatal stroke. Ipsilesional volume loss is not associated with clinical motor function. Contralesional volume is inversely correlated with clinical motor function, suggesting the thalamus is involved in the known developmental plasticity that occurs in the contralesional hemisphere after early unilateral injury. Keywords: Perinatal stroke, Pediatric, Cerebral palsy, Thalamus, Diaschisis, MRI
ISSN:2213-1582