Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently,...

Full description

Bibliographic Details
Main Authors: Yinliang Wang, Qi Chen, Hanbo Zhao, Bingzhong Ren
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4723088?pdf=render
id doaj-1367dc15b97142fbb89e7cfabfa39857
record_format Article
spelling doaj-1367dc15b97142fbb89e7cfabfa398572020-11-25T00:59:49ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01111e014714410.1371/journal.pone.0147144Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.Yinliang WangQi ChenHanbo ZhaoBingzhong RenThe leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7/9/10, AquaOR17/24/32 and AquaIR4 were highly expressed in the antenna of males, suggesting that these genes were related to sex-specific behaviors, and expression trends that were male specific were observed for most candidate olfactory genes, which supported the existence of a female-produced sex pheromone in A. quadriimpressum. All of these results could provide valuable information and guidance for future functional studies on these genes and provide better molecular knowledge regarding the olfactory system in A. quadriimpressum.http://europepmc.org/articles/PMC4723088?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Yinliang Wang
Qi Chen
Hanbo Zhao
Bingzhong Ren
spellingShingle Yinliang Wang
Qi Chen
Hanbo Zhao
Bingzhong Ren
Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.
PLoS ONE
author_facet Yinliang Wang
Qi Chen
Hanbo Zhao
Bingzhong Ren
author_sort Yinliang Wang
title Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.
title_short Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.
title_full Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.
title_fullStr Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.
title_full_unstemmed Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.
title_sort identification and comparison of candidate olfactory genes in the olfactory and non-olfactory organs of elm pest ambrostoma quadriimpressum (coleoptera: chrysomelidae) based on transcriptome analysis.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2016-01-01
description The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7/9/10, AquaOR17/24/32 and AquaIR4 were highly expressed in the antenna of males, suggesting that these genes were related to sex-specific behaviors, and expression trends that were male specific were observed for most candidate olfactory genes, which supported the existence of a female-produced sex pheromone in A. quadriimpressum. All of these results could provide valuable information and guidance for future functional studies on these genes and provide better molecular knowledge regarding the olfactory system in A. quadriimpressum.
url http://europepmc.org/articles/PMC4723088?pdf=render
work_keys_str_mv AT yinliangwang identificationandcomparisonofcandidateolfactorygenesintheolfactoryandnonolfactoryorgansofelmpestambrostomaquadriimpressumcoleopterachrysomelidaebasedontranscriptomeanalysis
AT qichen identificationandcomparisonofcandidateolfactorygenesintheolfactoryandnonolfactoryorgansofelmpestambrostomaquadriimpressumcoleopterachrysomelidaebasedontranscriptomeanalysis
AT hanbozhao identificationandcomparisonofcandidateolfactorygenesintheolfactoryandnonolfactoryorgansofelmpestambrostomaquadriimpressumcoleopterachrysomelidaebasedontranscriptomeanalysis
AT bingzhongren identificationandcomparisonofcandidateolfactorygenesintheolfactoryandnonolfactoryorgansofelmpestambrostomaquadriimpressumcoleopterachrysomelidaebasedontranscriptomeanalysis
_version_ 1725215948029296640