Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models

<p>Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the b...

Full description

Bibliographic Details
Main Authors: G. Thornhill, W. Collins, D. Olivié, R. B. Skeie, A. Archibald, S. Bauer, R. Checa-Garcia, S. Fiedler, G. Folberth, A. Gjermundsen, L. Horowitz, J.-F. Lamarque, M. Michou, J. Mulcahy, P. Nabat, V. Naik, F. M. O'Connor, F. Paulot, M. Schulz, C. E. Scott, R. Séférian, C. Smith, T. Takemura, S. Tilmes, K. Tsigaridis, J. Weber
Format: Article
Language:English
Published: Copernicus Publications 2021-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/1105/2021/acp-21-1105-2021.pdf
id doaj-13a27c7c269d4e36a79f7adbb3f3cc95
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author G. Thornhill
W. Collins
D. Olivié
R. B. Skeie
A. Archibald
A. Archibald
S. Bauer
R. Checa-Garcia
S. Fiedler
G. Folberth
A. Gjermundsen
L. Horowitz
J.-F. Lamarque
M. Michou
J. Mulcahy
P. Nabat
V. Naik
F. M. O'Connor
F. Paulot
M. Schulz
C. E. Scott
R. Séférian
C. Smith
T. Takemura
S. Tilmes
K. Tsigaridis
K. Tsigaridis
J. Weber
spellingShingle G. Thornhill
W. Collins
D. Olivié
R. B. Skeie
A. Archibald
A. Archibald
S. Bauer
R. Checa-Garcia
S. Fiedler
G. Folberth
A. Gjermundsen
L. Horowitz
J.-F. Lamarque
M. Michou
J. Mulcahy
P. Nabat
V. Naik
F. M. O'Connor
F. Paulot
M. Schulz
C. E. Scott
R. Séférian
C. Smith
T. Takemura
S. Tilmes
K. Tsigaridis
K. Tsigaridis
J. Weber
Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
Atmospheric Chemistry and Physics
author_facet G. Thornhill
W. Collins
D. Olivié
R. B. Skeie
A. Archibald
A. Archibald
S. Bauer
R. Checa-Garcia
S. Fiedler
G. Folberth
A. Gjermundsen
L. Horowitz
J.-F. Lamarque
M. Michou
J. Mulcahy
P. Nabat
V. Naik
F. M. O'Connor
F. Paulot
M. Schulz
C. E. Scott
R. Séférian
C. Smith
T. Takemura
S. Tilmes
K. Tsigaridis
K. Tsigaridis
J. Weber
author_sort G. Thornhill
title Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
title_short Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
title_full Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
title_fullStr Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
title_full_unstemmed Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
title_sort climate-driven chemistry and aerosol feedbacks in cmip6 earth system models
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2021-01-01
description <p>Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify.</p> <p>This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change.</p> <p>We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of <span class="inline-formula">CO<sub>2</sub></span> concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so<span id="page1106"/> we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models.</p>
url https://acp.copernicus.org/articles/21/1105/2021/acp-21-1105-2021.pdf
work_keys_str_mv AT gthornhill climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT wcollins climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT dolivie climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT rbskeie climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT aarchibald climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT aarchibald climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT sbauer climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT rchecagarcia climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT sfiedler climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT gfolberth climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT agjermundsen climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT lhorowitz climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT jflamarque climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT mmichou climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT jmulcahy climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT pnabat climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT vnaik climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT fmoconnor climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT fpaulot climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT mschulz climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT cescott climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT rseferian climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT csmith climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT ttakemura climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT stilmes climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT ktsigaridis climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT ktsigaridis climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
AT jweber climatedrivenchemistryandaerosolfeedbacksincmip6earthsystemmodels
_version_ 1724321800076132352
spelling doaj-13a27c7c269d4e36a79f7adbb3f3cc952021-01-27T07:28:12ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-01-01211105112610.5194/acp-21-1105-2021Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system modelsG. Thornhill0W. Collins1D. Olivié2R. B. Skeie3A. Archibald4A. Archibald5S. Bauer6R. Checa-Garcia7S. Fiedler8G. Folberth9A. Gjermundsen10L. Horowitz11J.-F. Lamarque12M. Michou13J. Mulcahy14P. Nabat15V. Naik16F. M. O'Connor17F. Paulot18M. Schulz19C. E. Scott20R. Séférian21C. Smith22T. Takemura23S. Tilmes24K. Tsigaridis25K. Tsigaridis26J. Weber27Department of Meteorology, University of Reading, Reading, UKDepartment of Meteorology, University of Reading, Reading, UKNorwegian Meteorological Institute, Oslo, NorwayCICERO – Centre for International Climate and Environmental Research Oslo, Oslo, NorwayDepartment of Chemistry, University of Cambridge, Cambridge, UKNational Centre for Atmospheric Science, Cambridge, UKNASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, USA, USALaboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS-UVSQ, Gif-sur-Yvette, FranceMax-Planck-Institute for Meteorology, Hamburg, GermanyMet Office Hadley Centre, Exeter, UKNorwegian Meteorological Institute, Oslo, NorwayGFDL/NOAA, Princeton University, Princeton, NJ, USANational Centre for Atmospheric Research, Boulder, CO, USACNRM, Meteo-France, Toulouse CEDEX, FranceMet Office Hadley Centre, Exeter, UKCNRM, Meteo-France, Toulouse CEDEX, FranceGFDL/NOAA, Princeton University, Princeton, NJ, USAMet Office Hadley Centre, Exeter, UKGFDL/NOAA, Princeton University, Princeton, NJ, USANorwegian Meteorological Institute, Oslo, NorwaySchool of Earth and Environment, University of Leeds, Leeds, UKCNRM, Meteo-France, Toulouse CEDEX, FranceSchool of Earth and Environment, University of Leeds, Leeds, UKResearch Institute for Applied Mechanics, Kyushu University, Fukuoka, JapanNational Centre for Atmospheric Research, Boulder, CO, USANASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, USA, USACenter for Climate Systems Research, Columbia University, New York, NY, USADepartment of Chemistry, University of Cambridge, Cambridge, UK<p>Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify.</p> <p>This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change.</p> <p>We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of <span class="inline-formula">CO<sub>2</sub></span> concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so<span id="page1106"/> we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models.</p>https://acp.copernicus.org/articles/21/1105/2021/acp-21-1105-2021.pdf