Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.
Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a m...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2011-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3228727?pdf=render |
id |
doaj-14cb1a700e514ba6b1417beaaa5a7191 |
---|---|
record_format |
Article |
spelling |
doaj-14cb1a700e514ba6b1417beaaa5a71912020-11-25T01:56:04ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-01612e2765010.1371/journal.pone.0027650Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.Jared B HawkinsMark T JonesPaul E PlassmannDavid A Thorley-LawsonGerminal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.http://europepmc.org/articles/PMC3228727?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jared B Hawkins Mark T Jones Paul E Plassmann David A Thorley-Lawson |
spellingShingle |
Jared B Hawkins Mark T Jones Paul E Plassmann David A Thorley-Lawson Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues. PLoS ONE |
author_facet |
Jared B Hawkins Mark T Jones Paul E Plassmann David A Thorley-Lawson |
author_sort |
Jared B Hawkins |
title |
Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues. |
title_short |
Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues. |
title_full |
Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues. |
title_fullStr |
Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues. |
title_full_unstemmed |
Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues. |
title_sort |
chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2011-01-01 |
description |
Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries. |
url |
http://europepmc.org/articles/PMC3228727?pdf=render |
work_keys_str_mv |
AT jaredbhawkins chemotaxisindenselypopulatedtissuedeterminesgerminalcenteranatomyandcellmotilityanewparadigmforthedevelopmentofcomplextissues AT marktjones chemotaxisindenselypopulatedtissuedeterminesgerminalcenteranatomyandcellmotilityanewparadigmforthedevelopmentofcomplextissues AT pauleplassmann chemotaxisindenselypopulatedtissuedeterminesgerminalcenteranatomyandcellmotilityanewparadigmforthedevelopmentofcomplextissues AT davidathorleylawson chemotaxisindenselypopulatedtissuedeterminesgerminalcenteranatomyandcellmotilityanewparadigmforthedevelopmentofcomplextissues |
_version_ |
1724981800149712896 |