Analytical Review of Cybersecurity for Embedded Systems

To identify the key factors and create the landscape of cybersecurity for embedded systems (CSES), an analytical review of the existing research on CSES has been conducted. The common properties of embedded systems, such as mobility, small size, low cost, independence, and limited power consumption...

Full description

Bibliographic Details
Main Authors: Abdulmohsan Aloseel, Hongmei He, Carl Shaw, Muhammad Ali Khan
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9300139/
Description
Summary:To identify the key factors and create the landscape of cybersecurity for embedded systems (CSES), an analytical review of the existing research on CSES has been conducted. The common properties of embedded systems, such as mobility, small size, low cost, independence, and limited power consumption when compared to traditional computer systems, have caused many challenges in CSES. The conflict between cybersecurity requirements and the computing capabilities of embedded systems makes it critical to implement sophisticated security countermeasures against cyber-attacks in an embedded system with limited resources, without draining those resources. In this study, twelve factors influencing CSES have been identified: (1) the components; (2) the characteristics; (3) the implementation; (4) the technical domain; (5) the security requirements; (6) the security problems; (7) the connectivity protocols; (8) the attack surfaces; (9) the impact of the cyber-attacks; (10) the security challenges of the ESs; (11) the security solutions; and (12) the players (manufacturers, legislators, operators, and users). A Multiple Layers Feedback Framework of Embedded System Cybersecurity (MuLFESC) with nine layers of protection is proposed, with new metrics of risk assessment. This will enable cybersecurity practitioners to conduct an assessment of their systems with regard to twelve identified cybersecurity aspects. In MuLFESC, the feedback from the system-components layer to the system-operations layer could help implement “Security by Design” in the design stage at the bottom layer. The study provides a clear landscape of CSES and, therefore, could help to find better comprehensive solutions for CSES.
ISSN:2169-3536