A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene

We present a simple design of a broadband tunable metamaterial absorber (MMA) in the terahertz (THz) region, which consists of a single layer complementary gammadion-shaped (CGS) graphene sheet and a polydimethylsiloxane (PDMS) dielectric substrate placed on a continuous metal film. The Fermi energy...

Full description

Bibliographic Details
Main Authors: Fu Chen, Yongzhi Cheng, Hui Luo
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/4/860
Description
Summary:We present a simple design of a broadband tunable metamaterial absorber (MMA) in the terahertz (THz) region, which consists of a single layer complementary gammadion-shaped (CGS) graphene sheet and a polydimethylsiloxane (PDMS) dielectric substrate placed on a continuous metal film. The Fermi energy level (<i>E<sub>f</sub></i>) of the graphene can be modulated dynamically by the applied DC bias voltage, which enables us to electrically control the absorption performance of the proposed MMA flexibly. When <i>E<sub>f</sub></i> = 0.8 eV, the relative bandwidth of the proposed MMA, which represents the frequency region of absorption beyond 90%, can reaches its maximal value of 72.1%. Simulated electric field distributions reveal that the broadband absorption mainly originates from the excitation of surface plasmon polaritons (SPPs) on the CGS graphene sheet. Furthermore, the proposed MMA is polarization-insensitive and has wide angles for both transverse-electric (TE) and transverse-magnetic (TM) waves in the broadband frequency range. The broadband absorption capacity of the designed MMA can be effectively adjusted by varying the Fermi energy level of graphene. Lastly, the absorbance of the MMA can be adjusted from 42% to 99.1% by changing the <i>E<sub>f</sub></i> from 0 eV to 0.8 eV, which is in agreement with the theoretical calculation by using the interference 41theory. Due to its simple structure and flexible tunability, the proposed MMA has potential application prospects in tunable filtering, modulators, sensing, and other multispectral devices.
ISSN:1996-1944