Graphene-based tunable non-foster circuit for VHF applications

This paper presents a negative impedance converter (NIC) based on graphene field effect transistors (GFETs) for VHF applications. The NIC is designed following Linvill’s open circuit stable (OCS) topology. The DC modelling parameters of GFET are extracted from a device measured by Meric et al. [IEEE...

Full description

Bibliographic Details
Main Authors: Jing Tian, Deepak Singh Nagarkoti, Khalid Z. Rajab, Yang Hao
Format: Article
Language:English
Published: AIP Publishing LLC 2016-06-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4953354
Description
Summary:This paper presents a negative impedance converter (NIC) based on graphene field effect transistors (GFETs) for VHF applications. The NIC is designed following Linvill’s open circuit stable (OCS) topology. The DC modelling parameters of GFET are extracted from a device measured by Meric et al. [IEEE Electron Devices Meeting, 23.2.1 (2010)] Estimated parasitics are also taken into account. Simulation results from Keysight Advanced Design System (ADS) show good NIC performance up to 200 MHz and the value of negative capacitance is directly proportional to the capacitive load. In addition, it has been shown that by varying the supply voltage the value of negative capacitance can also be tuned. The NIC stability has been tested up to 2 GHz (10 times the maximum operation frequency) using Nyquist stability criterion to ensure there are no oscillation issues.
ISSN:2158-3226