The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process

In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the varia...

Full description

Bibliographic Details
Main Authors: Ikhsan Maulidi, Mahyus Ihsan, Vina Apriliani
Format: Article
Language:Indonesian
Published: Universitas Islam Negeri Raden Intan Lampung 2020-09-01
Series:Desimal
Subjects:
Online Access:http://ejournal.radenintan.ac.id/index.php/desimal/article/view/6374
id doaj-1769bd5574144eb3ad91c2072e63bf72
record_format Article
spelling doaj-1769bd5574144eb3ad91c2072e63bf722021-03-01T06:13:49ZindUniversitas Islam Negeri Raden Intan LampungDesimal2613-90732613-90812020-09-013327127810.24042/djm.v3i3.63743489The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson ProcessIkhsan Maulidi0Mahyus Ihsan1Vina Apriliani2(SINTA ID : 5978857) Universitas Syiah KualaUniversitas Syiah KualaUIN Ar-Raniry, Banda AcehIn this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator.http://ejournal.radenintan.ac.id/index.php/desimal/article/view/6374poisson processintensity functionpower trend functionasymptotic normality.
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Ikhsan Maulidi
Mahyus Ihsan
Vina Apriliani
spellingShingle Ikhsan Maulidi
Mahyus Ihsan
Vina Apriliani
The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
Desimal
poisson process
intensity function
power trend function
asymptotic normality.
author_facet Ikhsan Maulidi
Mahyus Ihsan
Vina Apriliani
author_sort Ikhsan Maulidi
title The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
title_short The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
title_full The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
title_fullStr The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
title_full_unstemmed The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
title_sort numerical simulation for asymptotic normality of the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous poisson process
publisher Universitas Islam Negeri Raden Intan Lampung
series Desimal
issn 2613-9073
2613-9081
publishDate 2020-09-01
description In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator.
topic poisson process
intensity function
power trend function
asymptotic normality.
url http://ejournal.radenintan.ac.id/index.php/desimal/article/view/6374
work_keys_str_mv AT ikhsanmaulidi thenumericalsimulationforasymptoticnormalityoftheintensityobtainedasaproductofaperiodicfunctionwiththepowertrendfunctionofanonhomogeneouspoissonprocess
AT mahyusihsan thenumericalsimulationforasymptoticnormalityoftheintensityobtainedasaproductofaperiodicfunctionwiththepowertrendfunctionofanonhomogeneouspoissonprocess
AT vinaapriliani thenumericalsimulationforasymptoticnormalityoftheintensityobtainedasaproductofaperiodicfunctionwiththepowertrendfunctionofanonhomogeneouspoissonprocess
AT ikhsanmaulidi numericalsimulationforasymptoticnormalityoftheintensityobtainedasaproductofaperiodicfunctionwiththepowertrendfunctionofanonhomogeneouspoissonprocess
AT mahyusihsan numericalsimulationforasymptoticnormalityoftheintensityobtainedasaproductofaperiodicfunctionwiththepowertrendfunctionofanonhomogeneouspoissonprocess
AT vinaapriliani numericalsimulationforasymptoticnormalityoftheintensityobtainedasaproductofaperiodicfunctionwiththepowertrendfunctionofanonhomogeneouspoissonprocess
_version_ 1724246890179985408