Holographic vector superconductor in Gauss–Bonnet gravity

In the probe limit, we numerically study the holographic p-wave superconductor phase transitions in the higher curvature theory. Concretely, we study the influences of Gauss–Bonnet parameter α on the Maxwell complex vector model (MCV) in the five-dimensional Gauss–Bonnet–AdS black hole and soliton b...

Full description

Bibliographic Details
Main Authors: Jun-Wang Lu, Ya-Bo Wu, Tuo Cai, Hai-Min Liu, Yin-Shuan Ren, Mo-Lin Liu
Format: Article
Language:English
Published: Elsevier 2016-02-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321316000110
Description
Summary:In the probe limit, we numerically study the holographic p-wave superconductor phase transitions in the higher curvature theory. Concretely, we study the influences of Gauss–Bonnet parameter α on the Maxwell complex vector model (MCV) in the five-dimensional Gauss–Bonnet–AdS black hole and soliton backgrounds, respectively. In the two backgrounds, the improving Gauss–Bonnet parameter α and dimension of the vector operator Δ inhibit the vector condensate. In the black hole, the condensate quickly saturates a stable value at lower temperature. Moreover, both the stable value of condensate and the ratio ωg/Tc increase with α. In the soliton, the location of the second pole of the imaginary part increases with α, which implies that the energy of the quasiparticle excitation increases with the improving higher curvature correction. In addition, the influences of the Gauss–Bonnet correction on the MCV model are similar to the ones on the SU(2) p-wave model, which confirms that the MCV model is a generalization of the SU(2) Yang–Mills model even without the applied magnetic field to some extent.
ISSN:0550-3213
1873-1562