Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study

BackgroundThere is strong evidence suggesting that higher levels of cardiorespiratory fitness (CRF) are associated with a healthier metabolic profile, and that CRF can serve as a powerful predictor of morbidity and mortality. In this context, a smartphone app based on the 2-k...

Full description

Bibliographic Details
Main Authors: Muntaner-Mas, Adria, Martinez-Nicolas, Antonio, Quesada, Alberto, Cadenas-Sanchez, Cristina, Ortega, Francisco B
Format: Article
Language:English
Published: JMIR Publications 2021-01-01
Series:JMIR mHealth and uHealth
Online Access:http://mhealth.jmir.org/2021/1/e14864/
id doaj-17f31b941c274314b9929ac04aba2214
record_format Article
spelling doaj-17f31b941c274314b9929ac04aba22142021-05-03T03:34:22ZengJMIR PublicationsJMIR mHealth and uHealth2291-52222021-01-0191e1486410.2196/14864Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability StudyMuntaner-Mas, AdriaMartinez-Nicolas, AntonioQuesada, AlbertoCadenas-Sanchez, CristinaOrtega, Francisco B BackgroundThere is strong evidence suggesting that higher levels of cardiorespiratory fitness (CRF) are associated with a healthier metabolic profile, and that CRF can serve as a powerful predictor of morbidity and mortality. In this context, a smartphone app based on the 2-km walk test (UKK test) would provide the possibility to assess CRF remotely in individuals geographically distributed around a country or continent, and even between continents, with minimal equipment and low costs. ObjectiveThe overall aim of this study was to evaluate the validity and reliability of 2kmFIT-App developed for Android and iOS mobile operating systems to estimate maximum oxygen consumption (VO2max) as an indicator of CRF. The specific aims of the study were to determine the validity of 2kmFIT-App to track distance and calculate heart rate (HR). MethodsTwenty participants were included for field-testing validation and reliability analysis. The participants completed the UKK test twice using 2kmFIT-App. Distance and HR were measured with the app as well as with accurate methods, and VO2max was estimated using the UKK test equation. ResultsThe validity results showed the following mean differences (app minus criterion): distance (–70.40, SD 51.47 meters), time (–0.59, SD 0.45 minutes), HR (–16.75, SD 9.96 beats/minute), and VO2max (3.59, SD 2.01 ml/kg/min). There was moderate validity found for HR (intraclass correlation coefficient [ICC] 0.731, 95% CI –0.211 to 0.942) and good validity found for VO2max (ICC 0.878, 95% CI –0.125 to 0.972). The reliability results showed the following mean differences (retest minus test): app distance (25.99, SD 43.21 meters), app time (–0.15, SD 0.94 seconds), pace (–0.18, SD 0.33 min/km), app HR (–4.5, 13.44 beats/minute), and app VO2max (0.92, SD 3.04 ml/kg/min). There was good reliability for app HR (ICC 0.897, 95% CI 0.742-0.959) and excellent validity for app VO2max (ICC 0.932, 95% CI 0.830-0.973). All of these findings were observed when using the app with an Android operating system, whereas validity was poor when the app was used with iOS. ConclusionsThis study shows that 2kmFIT-App is a new, scientifically valid and reliable tool able to objectively and remotely estimate CRF, HR, and distance with an Android but not iOS mobile operating system. However, certain limitations such as the time required by 2kmFIT-App to calculate HR or the temperature environment should be considered when using the app.http://mhealth.jmir.org/2021/1/e14864/
collection DOAJ
language English
format Article
sources DOAJ
author Muntaner-Mas, Adria
Martinez-Nicolas, Antonio
Quesada, Alberto
Cadenas-Sanchez, Cristina
Ortega, Francisco B
spellingShingle Muntaner-Mas, Adria
Martinez-Nicolas, Antonio
Quesada, Alberto
Cadenas-Sanchez, Cristina
Ortega, Francisco B
Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study
JMIR mHealth and uHealth
author_facet Muntaner-Mas, Adria
Martinez-Nicolas, Antonio
Quesada, Alberto
Cadenas-Sanchez, Cristina
Ortega, Francisco B
author_sort Muntaner-Mas, Adria
title Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study
title_short Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study
title_full Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study
title_fullStr Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study
title_full_unstemmed Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study
title_sort smartphone app (2kmfit-app) for measuring cardiorespiratory fitness: validity and reliability study
publisher JMIR Publications
series JMIR mHealth and uHealth
issn 2291-5222
publishDate 2021-01-01
description BackgroundThere is strong evidence suggesting that higher levels of cardiorespiratory fitness (CRF) are associated with a healthier metabolic profile, and that CRF can serve as a powerful predictor of morbidity and mortality. In this context, a smartphone app based on the 2-km walk test (UKK test) would provide the possibility to assess CRF remotely in individuals geographically distributed around a country or continent, and even between continents, with minimal equipment and low costs. ObjectiveThe overall aim of this study was to evaluate the validity and reliability of 2kmFIT-App developed for Android and iOS mobile operating systems to estimate maximum oxygen consumption (VO2max) as an indicator of CRF. The specific aims of the study were to determine the validity of 2kmFIT-App to track distance and calculate heart rate (HR). MethodsTwenty participants were included for field-testing validation and reliability analysis. The participants completed the UKK test twice using 2kmFIT-App. Distance and HR were measured with the app as well as with accurate methods, and VO2max was estimated using the UKK test equation. ResultsThe validity results showed the following mean differences (app minus criterion): distance (–70.40, SD 51.47 meters), time (–0.59, SD 0.45 minutes), HR (–16.75, SD 9.96 beats/minute), and VO2max (3.59, SD 2.01 ml/kg/min). There was moderate validity found for HR (intraclass correlation coefficient [ICC] 0.731, 95% CI –0.211 to 0.942) and good validity found for VO2max (ICC 0.878, 95% CI –0.125 to 0.972). The reliability results showed the following mean differences (retest minus test): app distance (25.99, SD 43.21 meters), app time (–0.15, SD 0.94 seconds), pace (–0.18, SD 0.33 min/km), app HR (–4.5, 13.44 beats/minute), and app VO2max (0.92, SD 3.04 ml/kg/min). There was good reliability for app HR (ICC 0.897, 95% CI 0.742-0.959) and excellent validity for app VO2max (ICC 0.932, 95% CI 0.830-0.973). All of these findings were observed when using the app with an Android operating system, whereas validity was poor when the app was used with iOS. ConclusionsThis study shows that 2kmFIT-App is a new, scientifically valid and reliable tool able to objectively and remotely estimate CRF, HR, and distance with an Android but not iOS mobile operating system. However, certain limitations such as the time required by 2kmFIT-App to calculate HR or the temperature environment should be considered when using the app.
url http://mhealth.jmir.org/2021/1/e14864/
work_keys_str_mv AT muntanermasadria smartphoneapp2kmfitappformeasuringcardiorespiratoryfitnessvalidityandreliabilitystudy
AT martineznicolasantonio smartphoneapp2kmfitappformeasuringcardiorespiratoryfitnessvalidityandreliabilitystudy
AT quesadaalberto smartphoneapp2kmfitappformeasuringcardiorespiratoryfitnessvalidityandreliabilitystudy
AT cadenassanchezcristina smartphoneapp2kmfitappformeasuringcardiorespiratoryfitnessvalidityandreliabilitystudy
AT ortegafranciscob smartphoneapp2kmfitappformeasuringcardiorespiratoryfitnessvalidityandreliabilitystudy
_version_ 1721484439659216896