A Simple Approach for Mapping Forest Cover from Time Series of Satellite Data

Forest cover mapping based on multi-temporal satellite observations usually uses dozens of features as inputs, which requires huge training data and leads to many ill effects. In this paper, a simple but efficient approach was proposed to map forest cover from time series of satellite observations w...

Full description

Bibliographic Details
Main Authors: Yang Liu, Ronggao Liu
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/18/2918
Description
Summary:Forest cover mapping based on multi-temporal satellite observations usually uses dozens of features as inputs, which requires huge training data and leads to many ill effects. In this paper, a simple but efficient approach was proposed to map forest cover from time series of satellite observations without using classifiers and training data. This method focuses on the key step of forest mapping, i.e., separation of forests from herbaceous vegetation, considering that the non-vegetated area can be easily identified by the annual maximum vegetation index. We found that the greenness of forests is generally stable during the maturity period, but a similar greenness plateau does not exist for herbaceous vegetation. It means that the mean greenness during the vegetation maturity period of forests should be larger than that of herbaceous vegetation, while its standard deviation should be smaller. A combination of these two features could identify forests with several thresholds. The proposed approach was demonstrated for mapping the extents of different forest types with MODIS observations. The results show that the overall accuracy ranges 91.92–95.34% and the Kappa coefficient is 0.84–0.91 when compared with the reference datasets generated from fine-resolution imagery of Google Earth. The proposed approach can greatly simplify the procedures of forest cover mapping.
ISSN:2072-4292