High-speed single molecule imaging datasets of membrane proteins in rat basophilic leukemia cells
A high-speed fluorescence microscope operating at a 490 Hz frame rate was used to image two different membrane proteins- the high-affinity IgE receptor FcɛRI, a transmembrane protein, and an outer-leaflet GPI-anchored protein. The IgE receptor was imaged via IgE labeled with Janelia Fluor 646 and th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-06-01
|
Series: | Data in Brief |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352340920303188 |
Summary: | A high-speed fluorescence microscope operating at a 490 Hz frame rate was used to image two different membrane proteins- the high-affinity IgE receptor FcɛRI, a transmembrane protein, and an outer-leaflet GPI-anchored protein. The IgE receptor was imaged via IgE labeled with Janelia Fluor 646 and the GPI-anchored protein was imaged using a GPI-GFP fusion protein and an ATTO 647 N labeled anti-GFP nanobody. Data was collected for both proteins in untreated cells and cells that had actin stabilized by phalloidin. This dataset can be used for development and testing of single-particle tracking methods on experimental data and to explore the hypothesis that the actin cytoskeleton may affect the movement of membrane proteins. |
---|---|
ISSN: | 2352-3409 |