Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents
Positive feedbacks between wildfire emissions and climate are expected to increase in strength in the future; however, fires not only release carbon (C) from terrestrial to atmospheric pools, they also produce pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quant...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-05-01
|
Series: | Frontiers in Earth Science |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/feart.2018.00041/full |
id |
doaj-185636ebf0cf4ac399d7042f5452976c |
---|---|
record_format |
Article |
spelling |
doaj-185636ebf0cf4ac399d7042f5452976c2020-11-24T21:41:00ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632018-05-01610.3389/feart.2018.00041318711Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire IncidentsJessica Miesel0Alicia Reiner1Carol Ewell2Bernardo Maestrini3Matthew Dickinson4Department of Forestry, Michigan State University, East Lansing, MI, United StatesEnterprise Program, USDA Forest Service, Brevard, NC, United StatesRegion 5, USDA Forest Service, Sonora, CA, United StatesDepartment of Forestry, Michigan State University, East Lansing, MI, United StatesNorthern Research Station, USDA Forest Service, Delaware, OH, United StatesPositive feedbacks between wildfire emissions and climate are expected to increase in strength in the future; however, fires not only release carbon (C) from terrestrial to atmospheric pools, they also produce pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on total C and PyC stocks in California mixed-conifer forest, and to investigate patterns in C and PyC stocks and changes across gradients of fire severity, using metrics derived from remote sensing and field observations. Our unique study accessed active wildfires to establish and measure plots within days before and after fire, prior to substantial erosion. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, C and PyC, and collected forest floor and 0–5 cm mineral soil samples. Immediate tree mortality increased with severity, but overstory C loss was minimal and limited primarily to foliage. Fire released 85% of understory and herbaceous C (comprising < 1.0% of total ecosystem C). The greatest C losses occurred from downed wood and forest floor pools (19.3 ± 5.1 Mg ha−1 and 25.9 ± 3.2 Mg ha−1, respectively). Tree bark and downed wood contributed the greatest PyC gains (1.5 ± 0.3 Mg ha−1 and 1.9 ± 0.8 Mg ha−1, respectively), and PyC in tree bark showed non-significant positive trends with increasing severity. Overall PyC losses of 1.9 ± 0.3 Mg ha−1 and 0.5 ± 0.1 Mg ha−1 occurred from forest floor and 0–5 cm mineral soil, with no clear patterns across severity. Fire resulted in a net ecosystem PyC gain (1.0 ± 1.0 Mg ha−1) across aboveground and belowground components of these forests, and there were no differences among severity levels. Carbon emissions represented only 21.6% of total forest C; however, extensive conversion of C from live to dead pools will contribute to large downed wood C pools susceptible to release in a subsequent fire, indicating that there may be a delayed relationship between fire severity and C emissions. This research advances understanding of forest C loss and stabilization as PyC in wildfires; however, poor relationships between C and PyC gains or losses and fire severity highlight the complexity of fire impacts on forest C.http://journal.frontiersin.org/article/10.3389/feart.2018.00041/fullCaliforniafire behavior assessment teamcharcoalpyrogenic organic matterblack carbonfire effects |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jessica Miesel Alicia Reiner Carol Ewell Bernardo Maestrini Matthew Dickinson |
spellingShingle |
Jessica Miesel Alicia Reiner Carol Ewell Bernardo Maestrini Matthew Dickinson Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents Frontiers in Earth Science California fire behavior assessment team charcoal pyrogenic organic matter black carbon fire effects |
author_facet |
Jessica Miesel Alicia Reiner Carol Ewell Bernardo Maestrini Matthew Dickinson |
author_sort |
Jessica Miesel |
title |
Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents |
title_short |
Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents |
title_full |
Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents |
title_fullStr |
Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents |
title_full_unstemmed |
Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents |
title_sort |
quantifying changes in total and pyrogenic carbon stocks across fire severity gradients using active wildfire incidents |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Earth Science |
issn |
2296-6463 |
publishDate |
2018-05-01 |
description |
Positive feedbacks between wildfire emissions and climate are expected to increase in strength in the future; however, fires not only release carbon (C) from terrestrial to atmospheric pools, they also produce pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on total C and PyC stocks in California mixed-conifer forest, and to investigate patterns in C and PyC stocks and changes across gradients of fire severity, using metrics derived from remote sensing and field observations. Our unique study accessed active wildfires to establish and measure plots within days before and after fire, prior to substantial erosion. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, C and PyC, and collected forest floor and 0–5 cm mineral soil samples. Immediate tree mortality increased with severity, but overstory C loss was minimal and limited primarily to foliage. Fire released 85% of understory and herbaceous C (comprising < 1.0% of total ecosystem C). The greatest C losses occurred from downed wood and forest floor pools (19.3 ± 5.1 Mg ha−1 and 25.9 ± 3.2 Mg ha−1, respectively). Tree bark and downed wood contributed the greatest PyC gains (1.5 ± 0.3 Mg ha−1 and 1.9 ± 0.8 Mg ha−1, respectively), and PyC in tree bark showed non-significant positive trends with increasing severity. Overall PyC losses of 1.9 ± 0.3 Mg ha−1 and 0.5 ± 0.1 Mg ha−1 occurred from forest floor and 0–5 cm mineral soil, with no clear patterns across severity. Fire resulted in a net ecosystem PyC gain (1.0 ± 1.0 Mg ha−1) across aboveground and belowground components of these forests, and there were no differences among severity levels. Carbon emissions represented only 21.6% of total forest C; however, extensive conversion of C from live to dead pools will contribute to large downed wood C pools susceptible to release in a subsequent fire, indicating that there may be a delayed relationship between fire severity and C emissions. This research advances understanding of forest C loss and stabilization as PyC in wildfires; however, poor relationships between C and PyC gains or losses and fire severity highlight the complexity of fire impacts on forest C. |
topic |
California fire behavior assessment team charcoal pyrogenic organic matter black carbon fire effects |
url |
http://journal.frontiersin.org/article/10.3389/feart.2018.00041/full |
work_keys_str_mv |
AT jessicamiesel quantifyingchangesintotalandpyrogeniccarbonstocksacrossfireseveritygradientsusingactivewildfireincidents AT aliciareiner quantifyingchangesintotalandpyrogeniccarbonstocksacrossfireseveritygradientsusingactivewildfireincidents AT carolewell quantifyingchangesintotalandpyrogeniccarbonstocksacrossfireseveritygradientsusingactivewildfireincidents AT bernardomaestrini quantifyingchangesintotalandpyrogeniccarbonstocksacrossfireseveritygradientsusingactivewildfireincidents AT matthewdickinson quantifyingchangesintotalandpyrogeniccarbonstocksacrossfireseveritygradientsusingactivewildfireincidents |
_version_ |
1725923699416104960 |