Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.

BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escheric...

Full description

Bibliographic Details
Main Authors: Gaëlle Cane, Vanessa Liévin-Le Moal, Gilles Pagès, Alain L Servin, Paul Hofman, Valérie Vouret-Craviari
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2007-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2147078?pdf=render
id doaj-18924ce530c84a38bb03d46ce15a605b
record_format Article
spelling doaj-18924ce530c84a38bb03d46ce15a605b2020-11-25T01:11:57ZengPublic Library of Science (PLoS)PLoS ONE1932-62032007-01-01212e135910.1371/journal.pone.0001359Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.Gaëlle CaneVanessa Liévin-Le MoalGilles PagèsAlain L ServinPaul HofmanValérie Vouret-CraviariBACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC). METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1) the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55) acting as a bacterial receptor, and (2) the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro-inflammatory E. coli strain and angiogenesis which appeared recently as a novel component of IBD pathogenesis.http://europepmc.org/articles/PMC2147078?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Gaëlle Cane
Vanessa Liévin-Le Moal
Gilles Pagès
Alain L Servin
Paul Hofman
Valérie Vouret-Craviari
spellingShingle Gaëlle Cane
Vanessa Liévin-Le Moal
Gilles Pagès
Alain L Servin
Paul Hofman
Valérie Vouret-Craviari
Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.
PLoS ONE
author_facet Gaëlle Cane
Vanessa Liévin-Le Moal
Gilles Pagès
Alain L Servin
Paul Hofman
Valérie Vouret-Craviari
author_sort Gaëlle Cane
title Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.
title_short Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.
title_full Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.
title_fullStr Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.
title_full_unstemmed Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.
title_sort up-regulation of intestinal vascular endothelial growth factor by afa/dr diffusely adhering escherichia coli.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2007-01-01
description BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC). METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1) the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55) acting as a bacterial receptor, and (2) the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro-inflammatory E. coli strain and angiogenesis which appeared recently as a novel component of IBD pathogenesis.
url http://europepmc.org/articles/PMC2147078?pdf=render
work_keys_str_mv AT gaellecane upregulationofintestinalvascularendothelialgrowthfactorbyafadrdiffuselyadheringescherichiacoli
AT vanessalievinlemoal upregulationofintestinalvascularendothelialgrowthfactorbyafadrdiffuselyadheringescherichiacoli
AT gillespages upregulationofintestinalvascularendothelialgrowthfactorbyafadrdiffuselyadheringescherichiacoli
AT alainlservin upregulationofintestinalvascularendothelialgrowthfactorbyafadrdiffuselyadheringescherichiacoli
AT paulhofman upregulationofintestinalvascularendothelialgrowthfactorbyafadrdiffuselyadheringescherichiacoli
AT valerievouretcraviari upregulationofintestinalvascularendothelialgrowthfactorbyafadrdiffuselyadheringescherichiacoli
_version_ 1725168652042371072