Simulation and Optimization of Contactless Power Transfer System for Rotary Ultrasonic Machining

In today’s rotary ultrasonic machining (RUM), the power transfer system is based on a contactless power system (rotary transformer) rather than the slip ring that cannot cope with high-speed rotary of the tool. The efficiency of the rotary transformer is vital to the whole rotary ultrasonic machine....

Full description

Bibliographic Details
Main Authors: Wang Xinwei, Wang Aimin, Wang Xiaolong
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20166812001
Description
Summary:In today’s rotary ultrasonic machining (RUM), the power transfer system is based on a contactless power system (rotary transformer) rather than the slip ring that cannot cope with high-speed rotary of the tool. The efficiency of the rotary transformer is vital to the whole rotary ultrasonic machine. This paper focused on simulation of the rotary transformer and enhancing the efficiency of the rotary transformer by optimizing three main factors that influence its efficiency, including the gap between the two ferrite cores, the ratio of length and width of the ferrite core and the thickness of ferrite. The finite element model of rotary transformer was built on Maxwell platform. Simulation and optimization work was based on the finite element model. The optimization results compared with the initial simulation result showed an approximate 18% enhancement in terms of efficiency, from 77.69% to 95.2%.
ISSN:2261-236X