Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation Gradient
While much research has addressed the aboveground response of trees to climate warming and related water shortage, not much is known about the drought sensitivity of the fine root system, in particular of mature trees. This study investigates the response of topsoil (0−10 cm) fine root bio...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Forests |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4907/11/3/289 |
id |
doaj-1970825ca5c4408fb83834ba24efdee5 |
---|---|
record_format |
Article |
spelling |
doaj-1970825ca5c4408fb83834ba24efdee52020-11-25T02:23:48ZengMDPI AGForests1999-49072020-03-0111328910.3390/f11030289f11030289Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation GradientSebastian Fuchs0Dietrich Hertel1Bernhard Schuldt2Christoph Leuschner3Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, GermanyPlant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, GermanyEcophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, GermanyPlant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, GermanyWhile much research has addressed the aboveground response of trees to climate warming and related water shortage, not much is known about the drought sensitivity of the fine root system, in particular of mature trees. This study investigates the response of topsoil (0−10 cm) fine root biomass (FRB), necromass (FRN), and fine root morphology of five temperate broadleaf tree species (<i>Acer platanoides </i>L.<i>, Carpinus betulus </i>L.<i>, Fraxinus excelsior </i>L.<i>, Quercus petraea (</i>Matt.) Liebl.<i>, Tilia cordata </i>Mill.) to a reduction in water availability, combining a precipitation gradient study (nine study sites; mean annual precipitation (MAP): 920−530 mm year<sup>−1</sup>) with the comparison of a moist period (average spring conditions) and an exceptionally dry period in the summer of the subsequent year. The extent of the root necromass/biomass (N/B) ratio increase was used as a measure of the species’ belowground sensitivity to water deficits. We hypothesized that the N/B ratio increases with long-term (precipitation gradient) and short-term reductions (moist vs. dry period) of water availability, while FRB changes only a little. In four of the five species (exception: <i>A. platanoides</i>), FRB did not change with a reduction in MAP, whereas FRN and N/B ratio increased toward the dry sites under ample water supply (exception:<i> Q. petraea</i>).<i> Q. petraea</i> was also the only species not to reduce root tip frequency after summer drought. Different slopes of the N/B ratio-MAP relation similarly point at a lower belowground drought sensitivity of <i>Q. petraea</i> than of the other species. After summer drought, all species lost the MAP dependence of the N/B ratio. Thus, fine root mortality increased more at the moister than the drier sites, suggesting a generally lower belowground drought sensitivity of the drier stands. We conclude that the five species differ in their belowground drought response. <i>Q. petraea</i> follows the most conservative soil exploration strategy with a generally smaller FRB and more drought-tolerant fine roots, as it maintains relatively constant FRB, FRN, and morphology across spatial and temporal dimensions of soil water deficits.https://www.mdpi.com/1999-4907/11/3/289acer platanoidescarpinus betulusfine root biomassfine root necromassfraxinus excelsiornecromass/biomass ratioquercus petraearoot morphologytilia cordatawater availability |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sebastian Fuchs Dietrich Hertel Bernhard Schuldt Christoph Leuschner |
spellingShingle |
Sebastian Fuchs Dietrich Hertel Bernhard Schuldt Christoph Leuschner Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation Gradient Forests acer platanoides carpinus betulus fine root biomass fine root necromass fraxinus excelsior necromass/biomass ratio quercus petraea root morphology tilia cordata water availability |
author_facet |
Sebastian Fuchs Dietrich Hertel Bernhard Schuldt Christoph Leuschner |
author_sort |
Sebastian Fuchs |
title |
Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation Gradient |
title_short |
Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation Gradient |
title_full |
Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation Gradient |
title_fullStr |
Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation Gradient |
title_full_unstemmed |
Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species Along A Precipitation Gradient |
title_sort |
effects of summer drought on the fine root system of five broadleaf tree species along a precipitation gradient |
publisher |
MDPI AG |
series |
Forests |
issn |
1999-4907 |
publishDate |
2020-03-01 |
description |
While much research has addressed the aboveground response of trees to climate warming and related water shortage, not much is known about the drought sensitivity of the fine root system, in particular of mature trees. This study investigates the response of topsoil (0−10 cm) fine root biomass (FRB), necromass (FRN), and fine root morphology of five temperate broadleaf tree species (<i>Acer platanoides </i>L.<i>, Carpinus betulus </i>L.<i>, Fraxinus excelsior </i>L.<i>, Quercus petraea (</i>Matt.) Liebl.<i>, Tilia cordata </i>Mill.) to a reduction in water availability, combining a precipitation gradient study (nine study sites; mean annual precipitation (MAP): 920−530 mm year<sup>−1</sup>) with the comparison of a moist period (average spring conditions) and an exceptionally dry period in the summer of the subsequent year. The extent of the root necromass/biomass (N/B) ratio increase was used as a measure of the species’ belowground sensitivity to water deficits. We hypothesized that the N/B ratio increases with long-term (precipitation gradient) and short-term reductions (moist vs. dry period) of water availability, while FRB changes only a little. In four of the five species (exception: <i>A. platanoides</i>), FRB did not change with a reduction in MAP, whereas FRN and N/B ratio increased toward the dry sites under ample water supply (exception:<i> Q. petraea</i>).<i> Q. petraea</i> was also the only species not to reduce root tip frequency after summer drought. Different slopes of the N/B ratio-MAP relation similarly point at a lower belowground drought sensitivity of <i>Q. petraea</i> than of the other species. After summer drought, all species lost the MAP dependence of the N/B ratio. Thus, fine root mortality increased more at the moister than the drier sites, suggesting a generally lower belowground drought sensitivity of the drier stands. We conclude that the five species differ in their belowground drought response. <i>Q. petraea</i> follows the most conservative soil exploration strategy with a generally smaller FRB and more drought-tolerant fine roots, as it maintains relatively constant FRB, FRN, and morphology across spatial and temporal dimensions of soil water deficits. |
topic |
acer platanoides carpinus betulus fine root biomass fine root necromass fraxinus excelsior necromass/biomass ratio quercus petraea root morphology tilia cordata water availability |
url |
https://www.mdpi.com/1999-4907/11/3/289 |
work_keys_str_mv |
AT sebastianfuchs effectsofsummerdroughtonthefinerootsystemoffivebroadleaftreespeciesalongaprecipitationgradient AT dietrichhertel effectsofsummerdroughtonthefinerootsystemoffivebroadleaftreespeciesalongaprecipitationgradient AT bernhardschuldt effectsofsummerdroughtonthefinerootsystemoffivebroadleaftreespeciesalongaprecipitationgradient AT christophleuschner effectsofsummerdroughtonthefinerootsystemoffivebroadleaftreespeciesalongaprecipitationgradient |
_version_ |
1724857114364477440 |