The quadratic variation for mixed-fractional Brownian motion

Abstract Let W = λ B + ν B H ${W}=\lambda B+\nu B^{H}$ be a mixed-fractional Brownian motion with Hurst index 0 < H < 1 2 $0< H<\frac{1}{2}$ and λ , ν ≠ 0 $\lambda,\nu\neq0$ . In this paper we study the quadratic covariation [ f ( W ) , W ] ( H ) $[f({W}),{W}]^{(H)}$ defined by [ f ( W )...

Full description

Bibliographic Details
Main Authors: Han Gao, Kun He, Litan Yan
Format: Article
Language:English
Published: SpringerOpen 2016-11-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1254-2
id doaj-19ff1faaed1d4b2596b6850737c51baa
record_format Article
spelling doaj-19ff1faaed1d4b2596b6850737c51baa2020-11-24T21:52:10ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-11-012016112010.1186/s13660-016-1254-2The quadratic variation for mixed-fractional Brownian motionHan Gao0Kun He1Litan Yan2Glorious Sun School of Business and Management, Donghua UniversityDepartment of Mathematics, Donghua UniversityDepartment of Mathematics, Donghua UniversityAbstract Let W = λ B + ν B H ${W}=\lambda B+\nu B^{H}$ be a mixed-fractional Brownian motion with Hurst index 0 < H < 1 2 $0< H<\frac{1}{2}$ and λ , ν ≠ 0 $\lambda,\nu\neq0$ . In this paper we study the quadratic covariation [ f ( W ) , W ] ( H ) $[f({W}),{W}]^{(H)}$ defined by [ f ( W ) , W ] t ( H ) : = lim ε ↓ 0 1 ν 2 ε 2 H ∫ 0 t { f ( W s + ε ) − f ( W s ) } ( W s + ε − W s ) d η s $$\bigl[f({W}),{W}\bigr]^{(H)}_{t}:=\lim_{\varepsilon\downarrow 0} \frac{1}{\nu^{2}\varepsilon^{2H}} \int_{0}^{t} \bigl\{ f({W}_{ s+\varepsilon})-f({W}_{s}) \bigr\} ({W}_{s+\varepsilon}-{W}_{s}) \,d\eta_{s} $$ in probability, where f is a Borel function and η s = λ 2 s + ν 2 s 2 H $\eta_{s}=\lambda^{2}s+\nu^{2}s^{2H}$ . For some suitable function f we show that the quadratic covariation exists in L 2 ( Ω ) $L^{2}(\Omega)$ and the Itô formula F ( W t ) = F ( 0 ) + ∫ 0 t f ( W s ) d W s + 1 2 [ f ( W ) , W ] t ( H ) $$F({W}_{t})=F(0)+ \int_{0}^{t}f({W}_{s})\,dW_{s}+ \frac{1}{2}\bigl[f({W}),{W}\bigr]^{(H)}_{t} $$ holds for all absolutely continuous function F with F ′ = f $F'=f$ , where the integral is the Skorohod integral with respect to W.http://link.springer.com/article/10.1186/s13660-016-1254-2mixed fractional Brownian motionMalliavin calculuslocal timefractional Itô formula
collection DOAJ
language English
format Article
sources DOAJ
author Han Gao
Kun He
Litan Yan
spellingShingle Han Gao
Kun He
Litan Yan
The quadratic variation for mixed-fractional Brownian motion
Journal of Inequalities and Applications
mixed fractional Brownian motion
Malliavin calculus
local time
fractional Itô formula
author_facet Han Gao
Kun He
Litan Yan
author_sort Han Gao
title The quadratic variation for mixed-fractional Brownian motion
title_short The quadratic variation for mixed-fractional Brownian motion
title_full The quadratic variation for mixed-fractional Brownian motion
title_fullStr The quadratic variation for mixed-fractional Brownian motion
title_full_unstemmed The quadratic variation for mixed-fractional Brownian motion
title_sort quadratic variation for mixed-fractional brownian motion
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2016-11-01
description Abstract Let W = λ B + ν B H ${W}=\lambda B+\nu B^{H}$ be a mixed-fractional Brownian motion with Hurst index 0 < H < 1 2 $0< H<\frac{1}{2}$ and λ , ν ≠ 0 $\lambda,\nu\neq0$ . In this paper we study the quadratic covariation [ f ( W ) , W ] ( H ) $[f({W}),{W}]^{(H)}$ defined by [ f ( W ) , W ] t ( H ) : = lim ε ↓ 0 1 ν 2 ε 2 H ∫ 0 t { f ( W s + ε ) − f ( W s ) } ( W s + ε − W s ) d η s $$\bigl[f({W}),{W}\bigr]^{(H)}_{t}:=\lim_{\varepsilon\downarrow 0} \frac{1}{\nu^{2}\varepsilon^{2H}} \int_{0}^{t} \bigl\{ f({W}_{ s+\varepsilon})-f({W}_{s}) \bigr\} ({W}_{s+\varepsilon}-{W}_{s}) \,d\eta_{s} $$ in probability, where f is a Borel function and η s = λ 2 s + ν 2 s 2 H $\eta_{s}=\lambda^{2}s+\nu^{2}s^{2H}$ . For some suitable function f we show that the quadratic covariation exists in L 2 ( Ω ) $L^{2}(\Omega)$ and the Itô formula F ( W t ) = F ( 0 ) + ∫ 0 t f ( W s ) d W s + 1 2 [ f ( W ) , W ] t ( H ) $$F({W}_{t})=F(0)+ \int_{0}^{t}f({W}_{s})\,dW_{s}+ \frac{1}{2}\bigl[f({W}),{W}\bigr]^{(H)}_{t} $$ holds for all absolutely continuous function F with F ′ = f $F'=f$ , where the integral is the Skorohod integral with respect to W.
topic mixed fractional Brownian motion
Malliavin calculus
local time
fractional Itô formula
url http://link.springer.com/article/10.1186/s13660-016-1254-2
work_keys_str_mv AT hangao thequadraticvariationformixedfractionalbrownianmotion
AT kunhe thequadraticvariationformixedfractionalbrownianmotion
AT litanyan thequadraticvariationformixedfractionalbrownianmotion
AT hangao quadraticvariationformixedfractionalbrownianmotion
AT kunhe quadraticvariationformixedfractionalbrownianmotion
AT litanyan quadraticvariationformixedfractionalbrownianmotion
_version_ 1725876496976838656