CD28-Dependent CTLA-4 Expression Fine-Tunes the Activation of Human Th17 Cells

Summary: Previous work has demonstrated that Th17 memory cells but not Th1 cells are resistant to CD28/CTLA-4 blockade with CTLA-4 Ig, leading us to investigate the individual roles of the CD28 and CTLA-4 cosignaling pathways on Th1 versus Th17 cells. We found that selective CD28 blockade with a dom...

Full description

Bibliographic Details
Main Authors: Scott M. Krummey, Christina R. Hartigan, Danya Liu, Mandy L. Ford
Format: Article
Language:English
Published: Elsevier 2020-04-01
Series:iScience
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004220300961
Description
Summary:Summary: Previous work has demonstrated that Th17 memory cells but not Th1 cells are resistant to CD28/CTLA-4 blockade with CTLA-4 Ig, leading us to investigate the individual roles of the CD28 and CTLA-4 cosignaling pathways on Th1 versus Th17 cells. We found that selective CD28 blockade with a domain antibody (dAb) inhibited Th1 cells but surprisingly augmented Th17 responses. CD28 agonism resulted in a profound increase in CTLA-4 expression in Th17 cells as compared with Th1 cells. Consistent with these findings, inhibition of the CD28 signaling protein AKT revealed that CTLA-4 expression on Th17 cells was more significantly reduced by AKT inhibition relative to CTLA-4 expression on Th17 cells. Finally, we found that FOXO1 and FOXO3 overexpression restrained high expression of CTLA-4 on Th17 cells but not Th1 cells. This study demonstrates that the heterogeneity of the CD4+ T cell compartment has implications for the immunomodulation of pathologic T cell responses. : Molecular Mechanism of Behavior; Immunology; Immune Response Subject Areas: Molecular Mechanism of Behavior, Immunology, Immune Response
ISSN:2589-0042