The Performance Evaluation of Horizontal Axis Wind Turbine Torque and Mechanical Power Generation Affected by the Number of Blade

This paper presents the evaluation of horizontal axis wind turbine torque and mechanical power generation and its relation to the number of blades at a given wind speed. The relationship of wind turbine rotational frequency, tip speed, minimum wind speed, mechanical power and torque related to the n...

Full description

Bibliographic Details
Main Authors: Tan Rodney H. G., Teow Matthew Y. W.
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20167003002
Description
Summary:This paper presents the evaluation of horizontal axis wind turbine torque and mechanical power generation and its relation to the number of blades at a given wind speed. The relationship of wind turbine rotational frequency, tip speed, minimum wind speed, mechanical power and torque related to the number of blades are derived. The purpose of this study is to determine the wind energy extraction efficiency achieved for every increment of blade number. Effective factor is introduced to interpret the effectiveness of the wind turbine extracting wind energy below and above the minimum wind speed for a given number of blades. Improve factor is introduced to indicate the improvement achieved for every increment of blades. The evaluation was performance with wind turbine from 1 to 6 blades. The evaluation results shows that the higher the number of blades the lower the minimum wind speed to achieve unity effective factor. High improve factors are achieved between 1 to 2 and 2 to 3 blades increment. It contributes to better understanding and determination for the choice of the number of blades for wind turbine design.
ISSN:2261-236X