Formation of high purity uranium via laser induced thermal decomposition of uranium nitride

Producing gram quantities of uranium metal in a controlled manner by traditional methods is challenging due to the complex chemistry of precursor material and extreme thermal requirements. In this article, a novel approach is reported that combines modeling and an advanced experimental technique for...

Full description

Bibliographic Details
Main Authors: Bradley C. Childs, Aiden A. Martin, Aurélien Perron, Emily E. Moore, Yaakov Idell, Tae Wook Heo, Debra L. Rosas, Cherie Schaeffer-Cuellar, Ryan L. Stillwell, Per Söderlind, Alexander Landa, Kiel S. Holliday, Jason R. Jeffries
Format: Article
Language:English
Published: Elsevier 2020-07-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127520302409
id doaj-1a941f1e944341fd83f5ebf0bc0bd95d
record_format Article
spelling doaj-1a941f1e944341fd83f5ebf0bc0bd95d2020-11-25T03:14:19ZengElsevierMaterials & Design0264-12752020-07-01192108706Formation of high purity uranium via laser induced thermal decomposition of uranium nitrideBradley C. Childs0Aiden A. Martin1Aurélien Perron2Emily E. Moore3Yaakov Idell4Tae Wook Heo5Debra L. Rosas6Cherie Schaeffer-Cuellar7Ryan L. Stillwell8Per Söderlind9Alexander Landa10Kiel S. Holliday11Jason R. Jeffries12Corresponding author.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USAProducing gram quantities of uranium metal in a controlled manner by traditional methods is challenging due to the complex chemistry of precursor material and extreme thermal requirements. In this article, a novel approach is reported that combines modeling and an advanced experimental technique for extracting uranium from a uranium-containing compound. Using uranium nitride as an example, a computational thermodynamic approach identified a decomposition pathway to convert uranium nitride to uranium metal at temperatures exceeding 2500 K under conditions of rapid material cooling. To realize these extreme conditions, laser-induced heating, which enables fine control of process location and rapid cooling, was utilized for high-temperature modification of material. Uranium nitride was irradiated by a controlled laser under several gaseous conditions including high-vacuum, argon, and nitrogen environments, resulting in uranium metal at yields up to 96%. The complete decomposition leading to pure uranium metal occurs at the high temperature surface region, where laser-based heating induces a surface depression and molten pool of material. The observed kinetic phase behaviors in this study fundamentally differ from previous uranium decomposition studies where small uranium metal precipitates from the nitride bulk are formed at the surface of uranium nitride.http://www.sciencedirect.com/science/article/pii/S0264127520302409Laser heatingReaction kineticsUraniumUranium nitrideCALPHADThermodynamics
collection DOAJ
language English
format Article
sources DOAJ
author Bradley C. Childs
Aiden A. Martin
Aurélien Perron
Emily E. Moore
Yaakov Idell
Tae Wook Heo
Debra L. Rosas
Cherie Schaeffer-Cuellar
Ryan L. Stillwell
Per Söderlind
Alexander Landa
Kiel S. Holliday
Jason R. Jeffries
spellingShingle Bradley C. Childs
Aiden A. Martin
Aurélien Perron
Emily E. Moore
Yaakov Idell
Tae Wook Heo
Debra L. Rosas
Cherie Schaeffer-Cuellar
Ryan L. Stillwell
Per Söderlind
Alexander Landa
Kiel S. Holliday
Jason R. Jeffries
Formation of high purity uranium via laser induced thermal decomposition of uranium nitride
Materials & Design
Laser heating
Reaction kinetics
Uranium
Uranium nitride
CALPHAD
Thermodynamics
author_facet Bradley C. Childs
Aiden A. Martin
Aurélien Perron
Emily E. Moore
Yaakov Idell
Tae Wook Heo
Debra L. Rosas
Cherie Schaeffer-Cuellar
Ryan L. Stillwell
Per Söderlind
Alexander Landa
Kiel S. Holliday
Jason R. Jeffries
author_sort Bradley C. Childs
title Formation of high purity uranium via laser induced thermal decomposition of uranium nitride
title_short Formation of high purity uranium via laser induced thermal decomposition of uranium nitride
title_full Formation of high purity uranium via laser induced thermal decomposition of uranium nitride
title_fullStr Formation of high purity uranium via laser induced thermal decomposition of uranium nitride
title_full_unstemmed Formation of high purity uranium via laser induced thermal decomposition of uranium nitride
title_sort formation of high purity uranium via laser induced thermal decomposition of uranium nitride
publisher Elsevier
series Materials & Design
issn 0264-1275
publishDate 2020-07-01
description Producing gram quantities of uranium metal in a controlled manner by traditional methods is challenging due to the complex chemistry of precursor material and extreme thermal requirements. In this article, a novel approach is reported that combines modeling and an advanced experimental technique for extracting uranium from a uranium-containing compound. Using uranium nitride as an example, a computational thermodynamic approach identified a decomposition pathway to convert uranium nitride to uranium metal at temperatures exceeding 2500 K under conditions of rapid material cooling. To realize these extreme conditions, laser-induced heating, which enables fine control of process location and rapid cooling, was utilized for high-temperature modification of material. Uranium nitride was irradiated by a controlled laser under several gaseous conditions including high-vacuum, argon, and nitrogen environments, resulting in uranium metal at yields up to 96%. The complete decomposition leading to pure uranium metal occurs at the high temperature surface region, where laser-based heating induces a surface depression and molten pool of material. The observed kinetic phase behaviors in this study fundamentally differ from previous uranium decomposition studies where small uranium metal precipitates from the nitride bulk are formed at the surface of uranium nitride.
topic Laser heating
Reaction kinetics
Uranium
Uranium nitride
CALPHAD
Thermodynamics
url http://www.sciencedirect.com/science/article/pii/S0264127520302409
work_keys_str_mv AT bradleycchilds formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT aidenamartin formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT aurelienperron formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT emilyemoore formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT yaakovidell formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT taewookheo formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT debralrosas formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT cherieschaeffercuellar formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT ryanlstillwell formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT persoderlind formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT alexanderlanda formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT kielsholliday formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
AT jasonrjeffries formationofhighpurityuraniumvialaserinducedthermaldecompositionofuraniumnitride
_version_ 1724643244894060544