Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2

The crystal structures of dirubidium potassium dysprosium bis(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group...

Full description

Bibliographic Details
Main Authors: Lotfi Rghioui, Lahcen El Ammari, Abderrazzak Assani, Mohamed Saadi
Format: Article
Language:English
Published: International Union of Crystallography 2019-07-01
Series:Acta Crystallographica Section E: Crystallographic Communications
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S2056989019008685
Description
Summary:The crystal structures of dirubidium potassium dysprosium bis(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group P\overline{3}m1 with the glaserite structure type. VO4 tetrahedra are linked to DyO6 or GdO6 octahedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities.
ISSN:2056-9890