Infinitely many solutions to quasilinear Schrödinger equations with critical exponent

This paper is concerned with the following quasilinear Schrödinger equations with critical exponent: \begin{equation*}\label{eqS0.1} - \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u = a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N. \end{equation*}...

Full description

Bibliographic Details
Main Authors: Li Wang, Jixiu Wang, Xiongzheng Li
Format: Article
Language:English
Published: University of Szeged 2019-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6966
Description
Summary:This paper is concerned with the following quasilinear Schrödinger equations with critical exponent: \begin{equation*}\label{eqS0.1} - \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u = a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N. \end{equation*} Here $\Delta _p u =\mathrm{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator with $1< p < N$, $p^* =\frac{Np}{N-p}$ is the critical Sobolev exponent. $1\le 2\omega<q<2\omega p,$ $a$ and $ b $ are suitable positive parameters, $V \in C(\mathbb{R}^N, [0, \infty) ),$ $ k\in C(\mathbb{R}^N,\mathbb{R})$. With the help of the concentration-compactness principle and R. Kajikiya's new version of symmetric Mountain Pass Lemma, we obtain infinitely many solutions which tend to zero under mild assumptions on $V$ and $k$.
ISSN:1417-3875
1417-3875