Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
This paper is concerned with the following quasilinear Schrödinger equations with critical exponent: \begin{equation*}\label{eqS0.1} - \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u = a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N. \end{equation*}...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2019-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6966 |
id |
doaj-1b2169a2815447049e073a56693c849d |
---|---|
record_format |
Article |
spelling |
doaj-1b2169a2815447049e073a56693c849d2021-07-14T07:21:32ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752019-01-012019511610.14232/ejqtde.2019.1.56966Infinitely many solutions to quasilinear Schrödinger equations with critical exponentLi Wang0Jixiu Wang1Xiongzheng Li2East China Jiaotong University, Nanchang, ChinaHubei University of Arts and Science, Xiangyang, ChinaEast China Jiaotong University, Nanchang, ChinaThis paper is concerned with the following quasilinear Schrödinger equations with critical exponent: \begin{equation*}\label{eqS0.1} - \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u = a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N. \end{equation*} Here $\Delta _p u =\mathrm{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator with $1< p < N$, $p^* =\frac{Np}{N-p}$ is the critical Sobolev exponent. $1\le 2\omega<q<2\omega p,$ $a$ and $ b $ are suitable positive parameters, $V \in C(\mathbb{R}^N, [0, \infty) ),$ $ k\in C(\mathbb{R}^N,\mathbb{R})$. With the help of the concentration-compactness principle and R. Kajikiya's new version of symmetric Mountain Pass Lemma, we obtain infinitely many solutions which tend to zero under mild assumptions on $V$ and $k$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6966critical exponentconcentration-compactness principlesymmetric mountain pass theorem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Li Wang Jixiu Wang Xiongzheng Li |
spellingShingle |
Li Wang Jixiu Wang Xiongzheng Li Infinitely many solutions to quasilinear Schrödinger equations with critical exponent Electronic Journal of Qualitative Theory of Differential Equations critical exponent concentration-compactness principle symmetric mountain pass theorem |
author_facet |
Li Wang Jixiu Wang Xiongzheng Li |
author_sort |
Li Wang |
title |
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent |
title_short |
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent |
title_full |
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent |
title_fullStr |
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent |
title_full_unstemmed |
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent |
title_sort |
infinitely many solutions to quasilinear schrödinger equations with critical exponent |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2019-01-01 |
description |
This paper is concerned with the following quasilinear Schrödinger equations with critical exponent:
\begin{equation*}\label{eqS0.1}
- \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u
= a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N.
\end{equation*}
Here $\Delta _p u =\mathrm{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator with $1< p < N$, $p^* =\frac{Np}{N-p}$ is the critical Sobolev exponent. $1\le 2\omega<q<2\omega p,$ $a$ and $ b $ are suitable positive parameters, $V \in C(\mathbb{R}^N, [0, \infty) ),$ $ k\in C(\mathbb{R}^N,\mathbb{R})$. With the help of the concentration-compactness principle and R. Kajikiya's new version of symmetric Mountain Pass Lemma, we obtain infinitely many solutions which tend to zero under mild assumptions on $V$ and $k$. |
topic |
critical exponent concentration-compactness principle symmetric mountain pass theorem |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6966 |
work_keys_str_mv |
AT liwang infinitelymanysolutionstoquasilinearschrodingerequationswithcriticalexponent AT jixiuwang infinitelymanysolutionstoquasilinearschrodingerequationswithcriticalexponent AT xiongzhengli infinitelymanysolutionstoquasilinearschrodingerequationswithcriticalexponent |
_version_ |
1721303440976510976 |