Infinitely many solutions to quasilinear Schrödinger equations with critical exponent

This paper is concerned with the following quasilinear Schrödinger equations with critical exponent: \begin{equation*}\label{eqS0.1} - \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u = a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N. \end{equation*}...

Full description

Bibliographic Details
Main Authors: Li Wang, Jixiu Wang, Xiongzheng Li
Format: Article
Language:English
Published: University of Szeged 2019-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6966
id doaj-1b2169a2815447049e073a56693c849d
record_format Article
spelling doaj-1b2169a2815447049e073a56693c849d2021-07-14T07:21:32ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752019-01-012019511610.14232/ejqtde.2019.1.56966Infinitely many solutions to quasilinear Schrödinger equations with critical exponentLi Wang0Jixiu Wang1Xiongzheng Li2East China Jiaotong University, Nanchang, ChinaHubei University of Arts and Science, Xiangyang, ChinaEast China Jiaotong University, Nanchang, ChinaThis paper is concerned with the following quasilinear Schrödinger equations with critical exponent: \begin{equation*}\label{eqS0.1} - \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u = a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N. \end{equation*} Here $\Delta _p u =\mathrm{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator with $1< p < N$, $p^* =\frac{Np}{N-p}$ is the critical Sobolev exponent. $1\le 2\omega<q<2\omega p,$ $a$ and $ b $ are suitable positive parameters, $V \in C(\mathbb{R}^N, [0, \infty) ),$ $ k\in C(\mathbb{R}^N,\mathbb{R})$. With the help of the concentration-compactness principle and R. Kajikiya's new version of symmetric Mountain Pass Lemma, we obtain infinitely many solutions which tend to zero under mild assumptions on $V$ and $k$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6966critical exponentconcentration-compactness principlesymmetric mountain pass theorem
collection DOAJ
language English
format Article
sources DOAJ
author Li Wang
Jixiu Wang
Xiongzheng Li
spellingShingle Li Wang
Jixiu Wang
Xiongzheng Li
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
Electronic Journal of Qualitative Theory of Differential Equations
critical exponent
concentration-compactness principle
symmetric mountain pass theorem
author_facet Li Wang
Jixiu Wang
Xiongzheng Li
author_sort Li Wang
title Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
title_short Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
title_full Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
title_fullStr Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
title_full_unstemmed Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
title_sort infinitely many solutions to quasilinear schrödinger equations with critical exponent
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2019-01-01
description This paper is concerned with the following quasilinear Schrödinger equations with critical exponent: \begin{equation*}\label{eqS0.1} - \Delta _p u+ V(x)|u|^{p-2}u - \Delta _p(|u|^{2\omega}) |u|^{2\omega-2}u = a k(x)|u|^{q-2}u+b |u|^{2\omega p^{*}-2}u,\qquad x\in\mathbb{R}^N. \end{equation*} Here $\Delta _p u =\mathrm{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator with $1< p < N$, $p^* =\frac{Np}{N-p}$ is the critical Sobolev exponent. $1\le 2\omega<q<2\omega p,$ $a$ and $ b $ are suitable positive parameters, $V \in C(\mathbb{R}^N, [0, \infty) ),$ $ k\in C(\mathbb{R}^N,\mathbb{R})$. With the help of the concentration-compactness principle and R. Kajikiya's new version of symmetric Mountain Pass Lemma, we obtain infinitely many solutions which tend to zero under mild assumptions on $V$ and $k$.
topic critical exponent
concentration-compactness principle
symmetric mountain pass theorem
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6966
work_keys_str_mv AT liwang infinitelymanysolutionstoquasilinearschrodingerequationswithcriticalexponent
AT jixiuwang infinitelymanysolutionstoquasilinearschrodingerequationswithcriticalexponent
AT xiongzhengli infinitelymanysolutionstoquasilinearschrodingerequationswithcriticalexponent
_version_ 1721303440976510976