Citrus plastid-related gene profiling based on expressed sequence tag analyses

Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs) and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those...

Full description

Bibliographic Details
Main Authors: Tercilio Calsa Jr., Antonio Figueira
Format: Article
Language:English
Published: Sociedade Brasileira de Genética 2007-01-01
Series:Genetics and Molecular Biology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000500013
Description
Summary:Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs) and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those from Arabidopsis, Eucalyptus and Pinus. Differential expression profiling for plastid-directed nuclear-encoded proteins and photosynthesis-related gene expression variation between Citrus sinensis and Citrus reticulata, when inoculated or not with Xylella fastidiosa, were also analyzed. Presumed Citrus plastome regions were more similar to Eucalyptus. Some putative genes appeared to be preferentially expressed in vegetative tissues (leaves and bark) or in reproductive organs (flowers and fruits). Genes preferentially expressed in fruit and flower may be associated with hypothetical physiological functions. Expression pattern clustering analysis suggested that photosynthesis- and carbon fixation-related genes appeared to be up- or down-regulated in a resistant or susceptible Citrus species after Xylella inoculation in comparison to non-infected controls, generating novel information which may be helpful to develop novel genetic manipulation strategies to control Citrus variegated chlorosis (CVC).
ISSN:1415-4757
1678-4685