Machine learning-based microstructure prediction during laser sintering of alumina
Abstract Predicting material’s microstructure under new processing conditions is essential in advanced manufacturing and materials science. This is because the material’s microstructure hugely influences the material’s properties. We demonstrate an elegant machine learning algorithm that faithfully...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-05-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-89816-x |
id |
doaj-1b792a930ba749c6b0fd702737a7049f |
---|---|
record_format |
Article |
spelling |
doaj-1b792a930ba749c6b0fd702737a7049f2021-05-23T11:31:45ZengNature Publishing GroupScientific Reports2045-23222021-05-0111111010.1038/s41598-021-89816-xMachine learning-based microstructure prediction during laser sintering of aluminaJianan Tang0Xiao Geng1Dongsheng Li2Yunfeng Shi3Jianhua Tong4Hai Xiao5Fei Peng6Department of Electrical and Computer Engineering, Clemson UniversityDepartment of Materials Science and Engineering, Clemson UniversityAdvanced Manufacturing LLCDepartment of Materials Science and Engineering, Rensselaer Polytechnic Institute, Materials Research CenterDepartment of Materials Science and Engineering, Clemson UniversityDepartment of Electrical and Computer Engineering, Clemson UniversityDepartment of Materials Science and Engineering, Clemson UniversityAbstract Predicting material’s microstructure under new processing conditions is essential in advanced manufacturing and materials science. This is because the material’s microstructure hugely influences the material’s properties. We demonstrate an elegant machine learning algorithm that faithfully predicts the microstructure under new conditions, without the need of knowing the governing laws. We name this algorithm, RCWGAN-GP, which is regression-based conditional generative adversarial networks with Wasserstein loss function and gradient penalty. This algorithm was trained with experimental SEM micrographs from laser-sintered alumina under various laser powers. The RCWGAN-GP realistically regenerates the SEM micrographs under the trained laser powers. Impressively, it also faithfully predicts the alumina’s microstructure under unexplored laser powers. The predicted microstructure features, including the morphology of the sintered particles and the pores, match the experimental SEM micrographs very well. We further quantitatively examined the prediction accuracy of the RCWGAN-GP. We trained the algorithm with computer-created micrograph datasets of secondary-phase growth governed by the well-known Johnson–Mehl–Avrami (JMA) equation. The RCWGAN-GP accurately regenerates the micrographs at the trained time series, in terms of the grains’ shapes, sizes, and spatial distributions. More importantly, the predicted secondary phase fraction accurately follows the JMA curve.https://doi.org/10.1038/s41598-021-89816-x |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jianan Tang Xiao Geng Dongsheng Li Yunfeng Shi Jianhua Tong Hai Xiao Fei Peng |
spellingShingle |
Jianan Tang Xiao Geng Dongsheng Li Yunfeng Shi Jianhua Tong Hai Xiao Fei Peng Machine learning-based microstructure prediction during laser sintering of alumina Scientific Reports |
author_facet |
Jianan Tang Xiao Geng Dongsheng Li Yunfeng Shi Jianhua Tong Hai Xiao Fei Peng |
author_sort |
Jianan Tang |
title |
Machine learning-based microstructure prediction during laser sintering of alumina |
title_short |
Machine learning-based microstructure prediction during laser sintering of alumina |
title_full |
Machine learning-based microstructure prediction during laser sintering of alumina |
title_fullStr |
Machine learning-based microstructure prediction during laser sintering of alumina |
title_full_unstemmed |
Machine learning-based microstructure prediction during laser sintering of alumina |
title_sort |
machine learning-based microstructure prediction during laser sintering of alumina |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2021-05-01 |
description |
Abstract Predicting material’s microstructure under new processing conditions is essential in advanced manufacturing and materials science. This is because the material’s microstructure hugely influences the material’s properties. We demonstrate an elegant machine learning algorithm that faithfully predicts the microstructure under new conditions, without the need of knowing the governing laws. We name this algorithm, RCWGAN-GP, which is regression-based conditional generative adversarial networks with Wasserstein loss function and gradient penalty. This algorithm was trained with experimental SEM micrographs from laser-sintered alumina under various laser powers. The RCWGAN-GP realistically regenerates the SEM micrographs under the trained laser powers. Impressively, it also faithfully predicts the alumina’s microstructure under unexplored laser powers. The predicted microstructure features, including the morphology of the sintered particles and the pores, match the experimental SEM micrographs very well. We further quantitatively examined the prediction accuracy of the RCWGAN-GP. We trained the algorithm with computer-created micrograph datasets of secondary-phase growth governed by the well-known Johnson–Mehl–Avrami (JMA) equation. The RCWGAN-GP accurately regenerates the micrographs at the trained time series, in terms of the grains’ shapes, sizes, and spatial distributions. More importantly, the predicted secondary phase fraction accurately follows the JMA curve. |
url |
https://doi.org/10.1038/s41598-021-89816-x |
work_keys_str_mv |
AT jianantang machinelearningbasedmicrostructurepredictionduringlasersinteringofalumina AT xiaogeng machinelearningbasedmicrostructurepredictionduringlasersinteringofalumina AT dongshengli machinelearningbasedmicrostructurepredictionduringlasersinteringofalumina AT yunfengshi machinelearningbasedmicrostructurepredictionduringlasersinteringofalumina AT jianhuatong machinelearningbasedmicrostructurepredictionduringlasersinteringofalumina AT haixiao machinelearningbasedmicrostructurepredictionduringlasersinteringofalumina AT feipeng machinelearningbasedmicrostructurepredictionduringlasersinteringofalumina |
_version_ |
1721429541874827264 |