Star Formation in the Ultraviolet

With the launch of JWST and the upcoming installation of extremely large telescopes, the first galaxies in our Universe will finally be revealed. Their light will be dominated by massive stars, which peak in in the ultra-violet (UV) part of the electromagnetic spectrum. Star formation is the key dri...

Full description

Bibliographic Details
Main Author: Jorick S. Vink
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Galaxies
Subjects:
Online Access:https://www.mdpi.com/2075-4434/8/2/43
Description
Summary:With the launch of JWST and the upcoming installation of extremely large telescopes, the first galaxies in our Universe will finally be revealed. Their light will be dominated by massive stars, which peak in in the ultra-violet (UV) part of the electromagnetic spectrum. Star formation is the key driver of the evolution of our Universe. At young ages, within 10 Million years, both high and low mass stars generate complex UV emission processes which are poorly understood yet are vital for interpreting high red-shift line emission. For these reasons, the Hubble Space Telescope (HST) will devote 1000 orbits to obtaining a UV Legacy Library of Young Stars as Essential Standards (ULLYSES). The purpose of this Overview is to outline the basic physical principles driving UV emission processes from local (within 100 parsecs of) star formation, ranging from huge star-forming complexes containing hundreds of massive and very-massive stars (VMS), such as 30 Doradus (the Tarantula Nebula) in the neighboring Magellanic Clouds (only 50 kpc away), to galaxies near and far, out to the epoch of Cosmic Reionization.
ISSN:2075-4434