Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin
This work evaluated dry and rainy conditions in the subregions of the São Francisco River Basin (BHSF) using the Standardized Precipitation Index (SPI) and Markov chains. Each subregion of the BHSF has specific physical and climatic characteristics. The data was obtained from the National Water Agen...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi)
2019-06-01
|
Series: | Revista Ambiente & Água |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2019000300311&lng=en&nrm=iso&tlng=en |
id |
doaj-1b90abf76dca46cc9cd45b7737baadb8 |
---|---|
record_format |
Article |
spelling |
doaj-1b90abf76dca46cc9cd45b7737baadb82020-11-25T00:17:39ZengInstituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi)Revista Ambiente & Água1980-993X2019-06-0114311510.4136/ambi-agua.2311Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River BasinEsdras Adriano Barbosa dos Santos0Tatijana Stosic1Ikaro Daniel de Carvalho Barreto2Laélia Campos3Antonio Samuel Alves da Silva4Universidade Federal de Sergipe (UFS), São Cristóvão, SE, Brasil Departamento de Estatística e Ciências Atuariais (DECAT). Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brasil Departamento de Estatística e Informática (DEINFO). Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brasil Departamento de Estatística e Informática (DEINFO). Universidade Federal de Sergipe (UFS), São Cristóvão, SE, Brasil Departamento de Física (DFI). Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brasil Departamento de Estatística e Informática (DEINFO). This work evaluated dry and rainy conditions in the subregions of the São Francisco River Basin (BHSF) using the Standardized Precipitation Index (SPI) and Markov chains. Each subregion of the BHSF has specific physical and climatic characteristics. The data was obtained from the National Water Agency (ANA), collected by four pluviometric stations (representative of each subregion), covering 46 years of data, from 1970 to 2015. The SPI was calculated for the time scales of six and twelve months and transition probabilities were obtained using the Markov chain. Transition matrices showed that, at both scales, if the climate conditions were severe drought or rainy, switching to another class would be unlikely in the short term. Correlating this information with the probabilities of the stationary distribution, it was possible to find the regions that are most likely to be under rainy or dry weather in the future. The recurrence times calculated for the stations that belong to the semi-arid region were smaller when compared to the value of the return period of the representative station of Upper São Francisco that has higher levels of precipitation, confirming the predisposition of the semi-arid region to present greater chances of future periods of drought.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2019000300311&lng=en&nrm=iso&tlng=endroughtMarkov chainsstandardized precipitation index |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Esdras Adriano Barbosa dos Santos Tatijana Stosic Ikaro Daniel de Carvalho Barreto Laélia Campos Antonio Samuel Alves da Silva |
spellingShingle |
Esdras Adriano Barbosa dos Santos Tatijana Stosic Ikaro Daniel de Carvalho Barreto Laélia Campos Antonio Samuel Alves da Silva Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin Revista Ambiente & Água drought Markov chains standardized precipitation index |
author_facet |
Esdras Adriano Barbosa dos Santos Tatijana Stosic Ikaro Daniel de Carvalho Barreto Laélia Campos Antonio Samuel Alves da Silva |
author_sort |
Esdras Adriano Barbosa dos Santos |
title |
Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin |
title_short |
Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin |
title_full |
Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin |
title_fullStr |
Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin |
title_full_unstemmed |
Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin |
title_sort |
application of markov chains to standardized precipitation index (spi) in são francisco river basin |
publisher |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi) |
series |
Revista Ambiente & Água |
issn |
1980-993X |
publishDate |
2019-06-01 |
description |
This work evaluated dry and rainy conditions in the subregions of the São Francisco River Basin (BHSF) using the Standardized Precipitation Index (SPI) and Markov chains. Each subregion of the BHSF has specific physical and climatic characteristics. The data was obtained from the National Water Agency (ANA), collected by four pluviometric stations (representative of each subregion), covering 46 years of data, from 1970 to 2015. The SPI was calculated for the time scales of six and twelve months and transition probabilities were obtained using the Markov chain. Transition matrices showed that, at both scales, if the climate conditions were severe drought or rainy, switching to another class would be unlikely in the short term. Correlating this information with the probabilities of the stationary distribution, it was possible to find the regions that are most likely to be under rainy or dry weather in the future. The recurrence times calculated for the stations that belong to the semi-arid region were smaller when compared to the value of the return period of the representative station of Upper São Francisco that has higher levels of precipitation, confirming the predisposition of the semi-arid region to present greater chances of future periods of drought. |
topic |
drought Markov chains standardized precipitation index |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2019000300311&lng=en&nrm=iso&tlng=en |
work_keys_str_mv |
AT esdrasadrianobarbosadossantos applicationofmarkovchainstostandardizedprecipitationindexspiinsaofranciscoriverbasin AT tatijanastosic applicationofmarkovchainstostandardizedprecipitationindexspiinsaofranciscoriverbasin AT ikarodanieldecarvalhobarreto applicationofmarkovchainstostandardizedprecipitationindexspiinsaofranciscoriverbasin AT laeliacampos applicationofmarkovchainstostandardizedprecipitationindexspiinsaofranciscoriverbasin AT antoniosamuelalvesdasilva applicationofmarkovchainstostandardizedprecipitationindexspiinsaofranciscoriverbasin |
_version_ |
1725378594448867328 |