Texture Classification Using Sparse Frame-Based Representations
<p/> <p>A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse linear combination of fra...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://dx.doi.org/10.1155/ASP/2006/52561 |
id |
doaj-1b9e8ecb148c496da3f017a5570c1a23 |
---|---|
record_format |
Article |
spelling |
doaj-1b9e8ecb148c496da3f017a5570c1a232020-11-24T22:30:23ZengSpringerOpenEURASIP Journal on Advances in Signal Processing1687-61721687-61802006-01-0120061052561Texture Classification Using Sparse Frame-Based RepresentationsSkretting KarlHusøy JohnHåkon<p/> <p>A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse linear combination of frame elements. FTCM has two phases. In the design phase a frame is trained for each texture class based on given texture example images. The design method is an iterative procedure in which the representation error, given a sparseness constraint, is minimized. In the classification phase each pixel in a test image is labeled by analyzing its spatial neighborhood. This block is represented by each of the frames designed for the texture classes under consideration, and the frame giving the best representation gives the class. The FTCM is applied to nine test images of natural textures commonly used in other texture classification work, yielding excellent overall performance.</p> http://dx.doi.org/10.1155/ASP/2006/52561 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Skretting Karl Husøy JohnHåkon |
spellingShingle |
Skretting Karl Husøy JohnHåkon Texture Classification Using Sparse Frame-Based Representations EURASIP Journal on Advances in Signal Processing |
author_facet |
Skretting Karl Husøy JohnHåkon |
author_sort |
Skretting Karl |
title |
Texture Classification Using Sparse Frame-Based Representations |
title_short |
Texture Classification Using Sparse Frame-Based Representations |
title_full |
Texture Classification Using Sparse Frame-Based Representations |
title_fullStr |
Texture Classification Using Sparse Frame-Based Representations |
title_full_unstemmed |
Texture Classification Using Sparse Frame-Based Representations |
title_sort |
texture classification using sparse frame-based representations |
publisher |
SpringerOpen |
series |
EURASIP Journal on Advances in Signal Processing |
issn |
1687-6172 1687-6180 |
publishDate |
2006-01-01 |
description |
<p/> <p>A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse linear combination of frame elements. FTCM has two phases. In the design phase a frame is trained for each texture class based on given texture example images. The design method is an iterative procedure in which the representation error, given a sparseness constraint, is minimized. In the classification phase each pixel in a test image is labeled by analyzing its spatial neighborhood. This block is represented by each of the frames designed for the texture classes under consideration, and the frame giving the best representation gives the class. The FTCM is applied to nine test images of natural textures commonly used in other texture classification work, yielding excellent overall performance.</p> |
url |
http://dx.doi.org/10.1155/ASP/2006/52561 |
work_keys_str_mv |
AT skrettingkarl textureclassificationusingsparseframebasedrepresentations AT hus248yjohnh229kon textureclassificationusingsparseframebasedrepresentations |
_version_ |
1725741270833299456 |