Solution structure and peptide binding of the PTB domain from the AIDA1 postsynaptic signaling scaffolding protein.

AIDA1 links persistent chemical signaling events occurring at the neuronal synapse with global changes in gene expression. Consistent with its role as a scaffolding protein, AIDA1 is composed of several protein-protein interaction domains. Here we report the NMR structure of the carboxy terminally l...

Full description

Bibliographic Details
Main Authors: Ekaterina Smirnova, Riya Shanbhag, Arwa Kurabi, Mehdi Mobli, Jamie J Kwan, Logan W Donaldson
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3683042?pdf=render
Description
Summary:AIDA1 links persistent chemical signaling events occurring at the neuronal synapse with global changes in gene expression. Consistent with its role as a scaffolding protein, AIDA1 is composed of several protein-protein interaction domains. Here we report the NMR structure of the carboxy terminally located phosphotyrosine binding domain (PTB) that is common to all AIDA1 splice variants. A comprehensive survey of peptides identified a consensus sequence around an NxxY motif that is shared by a number of related neuronal signaling proteins. Using peptide arrays and fluorescence based assays, we determined that the AIDA1 PTB domain binds amyloid protein precursor (APP) in a similar manner to the X11/Mint PTB domain, albeit at reduced affinity (∼10 µM) that may allow AIDA1 to effectively sample APP, as well as other protein partners in a variety of cellular contexts.
ISSN:1932-6203