The Influence of Residual Coagulant Al on the Biofilm EPS and Membrane Fouling Potential in Wastewater Reclamation

Biofouling is inevitable in wastewater reclamation when using membrane technology. In particular, the extracellular polymeric substances (EPS) from biofilm is a major contributor to biofouling. Coagulation is critical in the process of reusing wastewater before membrane treatment, and residual coagu...

Full description

Bibliographic Details
Main Authors: Shu Sun, Zhenhao Zhao, Xiaochun Cui, Mingxin Huo, Zhi Geng
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/4/1056
Description
Summary:Biofouling is inevitable in wastewater reclamation when using membrane technology. In particular, the extracellular polymeric substances (EPS) from biofilm is a major contributor to biofouling. Coagulation is critical in the process of reusing wastewater before membrane treatment, and residual coagulants (e.g., Al salts) are able to alter the characteristics of the biofilm EPS. However, the distribution of residual Al across varying biofilm EPS fractions and its effect on the membrane fouling potential resulting from biofilm EPS remains unclear. We found that 34% of the residual Al was present in the soluble EPS (S-EPS), 26% in the loosely bound EPS (LB-EPS) and 40% in the tightly bound EPS (TB-EPS). Moreover, compared with the control groups, the residual Al in biofilm induced more biofilm formation and more EPS formation. Al reduced the zeta potential and increased the hydrophobicity of the EPS. These changes induced a significant rise in the membrane fouling potential of S-EPS and LB-EPS. This work provides coagulation support for wastewater reclamation using membrane technology.
ISSN:2073-4441