Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates

Abstract We study the pseudo-spin density response of a disordered two-dimensional spin-polarized Bose gas to weak alternating magnetic field, assuming that one of the spin states of the doublet is macroscopically occupied and Bose-condensed while the occupation of the other state remains much small...

Full description

Bibliographic Details
Main Authors: V. M. Kovalev, I. G. Savenko
Format: Article
Language:English
Published: Nature Publishing Group 2017-05-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-01125-4
id doaj-1be0526bf5464831b96d360f57a7150c
record_format Article
spelling doaj-1be0526bf5464831b96d360f57a7150c2020-12-08T02:04:51ZengNature Publishing GroupScientific Reports2045-23222017-05-01711810.1038/s41598-017-01125-4Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensatesV. M. Kovalev0I. G. Savenko1Center for Theoretical Physics of Complex Systems, Institute for Basic ScienceCenter for Theoretical Physics of Complex Systems, Institute for Basic ScienceAbstract We study the pseudo-spin density response of a disordered two-dimensional spin-polarized Bose gas to weak alternating magnetic field, assuming that one of the spin states of the doublet is macroscopically occupied and Bose-condensed while the occupation of the other state remains much smaller. We calculate spatial and temporal dispersions of spin susceptibility of the gas taking into account spin-flip processes due to the transverse-longitudinal splitting, considering microcavity exciton polaritons as a testbed. Further, we use the Bogoliubov theory of weakly-interacting gases and show that the time-dependent magnetic field power absorption exhibits double resonance structure corresponding to two particle spin states (contrast to paramagnetic resonance in regular spin-polarized electron gas). We analyze the widths of these resonances caused by scattering on the disorder and show that, in contrast with the ballistic regime, in the presence of impurities, the polariton scattering on them is twofold: scattering on the impurity potential directly and scattering on the spatially fluctuating condensate density caused by the disorder. As a result, the width of the resonance associated with the Bose-condensed spin state can be surprisingly narrow in comparison with the width of the resonance associated with the non-condensed state.https://doi.org/10.1038/s41598-017-01125-4
collection DOAJ
language English
format Article
sources DOAJ
author V. M. Kovalev
I. G. Savenko
spellingShingle V. M. Kovalev
I. G. Savenko
Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates
Scientific Reports
author_facet V. M. Kovalev
I. G. Savenko
author_sort V. M. Kovalev
title Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates
title_short Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates
title_full Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates
title_fullStr Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates
title_full_unstemmed Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates
title_sort paramagnetic resonance in spin-polarized disordered bose-einstein condensates
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2017-05-01
description Abstract We study the pseudo-spin density response of a disordered two-dimensional spin-polarized Bose gas to weak alternating magnetic field, assuming that one of the spin states of the doublet is macroscopically occupied and Bose-condensed while the occupation of the other state remains much smaller. We calculate spatial and temporal dispersions of spin susceptibility of the gas taking into account spin-flip processes due to the transverse-longitudinal splitting, considering microcavity exciton polaritons as a testbed. Further, we use the Bogoliubov theory of weakly-interacting gases and show that the time-dependent magnetic field power absorption exhibits double resonance structure corresponding to two particle spin states (contrast to paramagnetic resonance in regular spin-polarized electron gas). We analyze the widths of these resonances caused by scattering on the disorder and show that, in contrast with the ballistic regime, in the presence of impurities, the polariton scattering on them is twofold: scattering on the impurity potential directly and scattering on the spatially fluctuating condensate density caused by the disorder. As a result, the width of the resonance associated with the Bose-condensed spin state can be surprisingly narrow in comparison with the width of the resonance associated with the non-condensed state.
url https://doi.org/10.1038/s41598-017-01125-4
work_keys_str_mv AT vmkovalev paramagneticresonanceinspinpolarizeddisorderedboseeinsteincondensates
AT igsavenko paramagneticresonanceinspinpolarizeddisorderedboseeinsteincondensates
_version_ 1724394155978784768