Preparation and Characterization of Tris(trimethylsiloxy)silyl Modified Polyurethane Acrylates and Their Application in Textile Treatment

Three series of silicone modified polyurethane acrylate (SPUA) prepolymers were prepared from dicyclohexylmethane-4, 4′-diisocyanate (HMDI), PPG1000, triethylene glycol (TEG), 2-hydroxyethyl acrylate (HEA), and multi-hydroxyalkyl silicone (MI-III) with tris(trimethylsiloxy)silyl propyl side groups....

Full description

Bibliographic Details
Main Authors: Xuecheng Yu, Ying Xiong, Zhen Li, Hongding Tang
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/8/1629
Description
Summary:Three series of silicone modified polyurethane acrylate (SPUA) prepolymers were prepared from dicyclohexylmethane-4, 4′-diisocyanate (HMDI), PPG1000, triethylene glycol (TEG), 2-hydroxyethyl acrylate (HEA), and multi-hydroxyalkyl silicone (MI-III) with tris(trimethylsiloxy)silyl propyl side groups. Their structures were confirmed by <sup>1</sup>H NMR, <sup>13</sup>C NMR, and Fourier transformed infrared (FTIR) analysis, and SPUA films were obtained by UV curing. The properties of films were investigated by attenuated total reflection (ATR)-FTIR, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), water contact angle (WCA), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), water and hexane resistance, and tensile testing. The results showed that the structures and dosages of MI-III could influence the polymerization properties, surface properties, water and n-hexane resistance, and thermal and tensile properties of SPUA. For instance, the surface aggregation of tris(trimethylsiloxy)silyl propyl groups (even ~2.5 wt%) could endow SPUA films with less microphase separation, good hydrophobicity, lipophilicity, thermal stability, and mechanical properties. Interestingly, obvious regular winkles appeared on the surfaces of SPUAIII films, which are characterized by relatively high WCA values. However, relatively smooth were observed on the surfaces of SPUAIII films, which also exhibit lower water absorption ratio values. Furthermore, the ordinary cotton textiles would be transformed into hydrophobic and oleophilic textiles after treating with SPUA simply, and they were used in the oil/water separation study. Among them, consistent with water and hexane resistance analysis of SPUA films, SPUAII treated cotton textiles are characterized by relatively small liquid absorption capacity (LAC) values. Thus, phenyl groups and side-chain tris(trimethylsiloxy)silyl propyl groups are helpful to improve the hydrophobicity and lipophilicity of SPUA films. SPUAII-5 (even with 5 wt% MII) treated cotton textiles could efficiently separate the oil/water mixture, such as n-hexane, cyclohexane, or methylbenzene with water. Thus, this material has great potential in the application of hydrophobic treatment, oil/water separation, and industrial sewage emissions, among others.
ISSN:2073-4360