Unsaturated seepage and stability of double-layer slope under rainfall infiltration

Taking a homogeneous double-layer soil slope as an example, the SEEP/W module and SLOPE/W module in the finite element analysis software GeoStudio were used in this paper. Then, the changes of pore water pressure and stability under different rainfall patterns and soil parameters were studied. Final...

Full description

Bibliographic Details
Main Authors: Zhang Yuan, Lu Haifeng
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/24/e3sconf_caes2021_03024.pdf
Description
Summary:Taking a homogeneous double-layer soil slope as an example, the SEEP/W module and SLOPE/W module in the finite element analysis software GeoStudio were used in this paper. Then, the changes of pore water pressure and stability under different rainfall patterns and soil parameters were studied. Finally, the variation curves of pore water pressure and slope safety factor with rainfall time were obtained. The results show that: Soil parameters a and m are directly proportional to the slope safety factor, while n is inversely proportional to the slope safety factor. Under the condition of continuous rainfall, the decreasing rate of slope safety factor is directly proportional to the rainfall intensity.Under different rainfall patterns, the continuous rainfall in the advanced and normal rainfall patterns will cause the slope stability to decline and then gradually recover, while delayed and averaged rainfall patterns rainfall will cause the slope stability to decline continuously.In addition, there is a lag period in the change of slope safety factor, and the whole lag period lasts about 6 hours. During the lag period, the pore water pressure inside the soil began to decrease, while the slope safety factor continued to decrease. The safety factor starts to recover after the lag period ends.
ISSN:2267-1242