Evaluating the synergic effect of waste rubber powder and recycled concrete aggregate on mechanical properties and durability of concrete

The use of waste materials in the concrete mixture can help human beings to preserve the environment and achieve environmentally-friendly concrete. In this study, the influences of simultaneous replacements of cement by waste rubber powder (WRP) and coarse aggregate by recycled concrete aggregate (R...

Full description

Bibliographic Details
Main Authors: Mostafa Amiri, Farzad Hatami, Emadaldin Mohammadi Golafshani
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Case Studies in Construction Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214509521001546
Description
Summary:The use of waste materials in the concrete mixture can help human beings to preserve the environment and achieve environmentally-friendly concrete. In this study, the influences of simultaneous replacements of cement by waste rubber powder (WRP) and coarse aggregate by recycled concrete aggregate (RCA) on the mechanical properties and durability of concrete were investigated experimentally. To do so, concrete specimens containing the WRP with the replacement ratios of 0 %, 2.5 %, and 5 % by weight of cement, and the RCA with the replacement levels of 0 %, 25 %, and 50 % of coarse aggregate were prepared. Moreover, different water to binder ratios and binder content were used. Mechanical properties of the concrete specimens consisting of compressive, flexural, and tensile strengths and the durability test of rapid chloride migration test (RCMT) were carried out at different ages. It was observed that the mechanical properties of concrete decrease by raising the proportions of recycled materials in all replacement ratios. Because of the negative effects of the WRP and RCA on, respectively, the cement matrix and the interfacial transition zone, the reduction of the mechanical properties are higher for the concrete specimens with both recycled materials. In the case of durability, the migration rate of chloride ions in concrete reduces by increasing the WRP rates due to the blockage of micro-pores connections. However, adding the RCA has a negative effect on the durability performance of concrete. Finally, four equations were proposed and evaluated for the compressive, tensile, flexural strength reduction and durability factors of concrete containing the WRP and RCA using the genetic programming.
ISSN:2214-5095