The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion Coefficients

We propose a finite volume method for the numerical resolution of two-dimensional steady diffusion problems with possibly discontinuous coefficients on unstructured polygonal meshes. Our numerical method is cellcentered, secondorder accurate on smooth solutions and based on a special numerical treat...

Full description

Bibliographic Details
Main Authors: Stefano Ferraris, Ivan Bevilacqua, Davide Canone, Davide Pognant, Maurizio Previati
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2012/187634
id doaj-1c2891a809af4edba1cf5ca6acf45263
record_format Article
spelling doaj-1c2891a809af4edba1cf5ca6acf452632020-11-24T23:41:00ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472012-01-01201210.1155/2012/187634187634The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion CoefficientsStefano Ferraris0Ivan Bevilacqua1Davide Canone2Davide Pognant3Maurizio Previati4Dipartimento di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA) Sez. Idraulica, Via Leonardo da Vinci 44, 10095 Grugliasco, ItalyDipartimento di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA) Sez. Idraulica, Via Leonardo da Vinci 44, 10095 Grugliasco, ItalyDipartimento di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA) Sez. Idraulica, Via Leonardo da Vinci 44, 10095 Grugliasco, ItalyDipartimento di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA) Sez. Idraulica, Via Leonardo da Vinci 44, 10095 Grugliasco, ItalyDipartimento di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA) Sez. Idraulica, Via Leonardo da Vinci 44, 10095 Grugliasco, ItalyWe propose a finite volume method for the numerical resolution of two-dimensional steady diffusion problems with possibly discontinuous coefficients on unstructured polygonal meshes. Our numerical method is cellcentered, secondorder accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.http://dx.doi.org/10.1155/2012/187634
collection DOAJ
language English
format Article
sources DOAJ
author Stefano Ferraris
Ivan Bevilacqua
Davide Canone
Davide Pognant
Maurizio Previati
spellingShingle Stefano Ferraris
Ivan Bevilacqua
Davide Canone
Davide Pognant
Maurizio Previati
The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion Coefficients
Mathematical Problems in Engineering
author_facet Stefano Ferraris
Ivan Bevilacqua
Davide Canone
Davide Pognant
Maurizio Previati
author_sort Stefano Ferraris
title The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion Coefficients
title_short The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion Coefficients
title_full The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion Coefficients
title_fullStr The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion Coefficients
title_full_unstemmed The Finite Volume Formulation for 2D Second-Order Elliptic Problems with Discontinuous Diffusion/Dispersion Coefficients
title_sort finite volume formulation for 2d second-order elliptic problems with discontinuous diffusion/dispersion coefficients
publisher Hindawi Limited
series Mathematical Problems in Engineering
issn 1024-123X
1563-5147
publishDate 2012-01-01
description We propose a finite volume method for the numerical resolution of two-dimensional steady diffusion problems with possibly discontinuous coefficients on unstructured polygonal meshes. Our numerical method is cellcentered, secondorder accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.
url http://dx.doi.org/10.1155/2012/187634
work_keys_str_mv AT stefanoferraris thefinitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT ivanbevilacqua thefinitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT davidecanone thefinitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT davidepognant thefinitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT mauriziopreviati thefinitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT stefanoferraris finitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT ivanbevilacqua finitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT davidecanone finitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT davidepognant finitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
AT mauriziopreviati finitevolumeformulationfor2dsecondorderellipticproblemswithdiscontinuousdiffusiondispersioncoefficients
_version_ 1725508348524101632