Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury
The interleukins (ILs) are a pluripotent cytokine family that have been reported to regulate ischemic stroke and cerebral ischemia/reperfusion (I/R) injury. IL-22 is a member of the IL-10 superfamily and plays important roles in tissue injury and repair. However, the effects of IL-22 on ischemic str...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Mediators of Inflammation |
Online Access: | http://dx.doi.org/10.1155/2021/6621296 |
id |
doaj-1c5865bfc73345c7b43d72755ca0d31a |
---|---|
record_format |
Article |
spelling |
doaj-1c5865bfc73345c7b43d72755ca0d31a2021-03-29T00:09:25ZengHindawi LimitedMediators of Inflammation1466-18612021-01-01202110.1155/2021/6621296Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion InjuryYongfei Dong0Chengyun Hu1Chunxia Huang2Jie Gao3Wanxiang Niu4Di Wang5Yang Wang6Chaoshi Niu7Department of NeurosurgeryDepartment of AnesthesiologyDepartment of AnesthesiologyDepartment of AnesthesiologyDepartment of NeurosurgeryDepartment of AnesthesiologyDepartment of NeurosurgeryDepartment of NeurosurgeryThe interleukins (ILs) are a pluripotent cytokine family that have been reported to regulate ischemic stroke and cerebral ischemia/reperfusion (I/R) injury. IL-22 is a member of the IL-10 superfamily and plays important roles in tissue injury and repair. However, the effects of IL-22 on ischemic stroke and cerebral I/R injury remain unclear. In the current study, we provided direct evidence that IL-22 treatment decreased infarct size, neurological deficits, and brain water content in mice subjected to cerebral I/R injury. IL-22 treatment remarkably reduced the expression of inflammatory cytokines, including IL-1β, monocyte chemotactic protein- (MCP-) 1, and tumor necrosis factor- (TNF-) α, both in serum and the ischemic cerebral cortex. In addition, IL-22 treatment also decreased oxidative stress and neuronal apoptosis in mice after cerebral I/R injury. Moreover, IL-22 treatment significantly increased Janus tyrosine kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 phosphorylation levels in mice and PC12 cells, and STAT3 knockdown abolished the IL-22-mediated neuroprotective function. These findings suggest that IL-22 might be exploited as a potential therapeutic agent for ischemic stroke and cerebral I/R injury.http://dx.doi.org/10.1155/2021/6621296 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yongfei Dong Chengyun Hu Chunxia Huang Jie Gao Wanxiang Niu Di Wang Yang Wang Chaoshi Niu |
spellingShingle |
Yongfei Dong Chengyun Hu Chunxia Huang Jie Gao Wanxiang Niu Di Wang Yang Wang Chaoshi Niu Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury Mediators of Inflammation |
author_facet |
Yongfei Dong Chengyun Hu Chunxia Huang Jie Gao Wanxiang Niu Di Wang Yang Wang Chaoshi Niu |
author_sort |
Yongfei Dong |
title |
Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury |
title_short |
Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury |
title_full |
Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury |
title_fullStr |
Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury |
title_full_unstemmed |
Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury |
title_sort |
interleukin-22 plays a protective role by regulating the jak2-stat3 pathway to improve inflammation, oxidative stress, and neuronal apoptosis following cerebral ischemia-reperfusion injury |
publisher |
Hindawi Limited |
series |
Mediators of Inflammation |
issn |
1466-1861 |
publishDate |
2021-01-01 |
description |
The interleukins (ILs) are a pluripotent cytokine family that have been reported to regulate ischemic stroke and cerebral ischemia/reperfusion (I/R) injury. IL-22 is a member of the IL-10 superfamily and plays important roles in tissue injury and repair. However, the effects of IL-22 on ischemic stroke and cerebral I/R injury remain unclear. In the current study, we provided direct evidence that IL-22 treatment decreased infarct size, neurological deficits, and brain water content in mice subjected to cerebral I/R injury. IL-22 treatment remarkably reduced the expression of inflammatory cytokines, including IL-1β, monocyte chemotactic protein- (MCP-) 1, and tumor necrosis factor- (TNF-) α, both in serum and the ischemic cerebral cortex. In addition, IL-22 treatment also decreased oxidative stress and neuronal apoptosis in mice after cerebral I/R injury. Moreover, IL-22 treatment significantly increased Janus tyrosine kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 phosphorylation levels in mice and PC12 cells, and STAT3 knockdown abolished the IL-22-mediated neuroprotective function. These findings suggest that IL-22 might be exploited as a potential therapeutic agent for ischemic stroke and cerebral I/R injury. |
url |
http://dx.doi.org/10.1155/2021/6621296 |
work_keys_str_mv |
AT yongfeidong interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury AT chengyunhu interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury AT chunxiahuang interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury AT jiegao interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury AT wanxiangniu interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury AT diwang interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury AT yangwang interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury AT chaoshiniu interleukin22playsaprotectiverolebyregulatingthejak2stat3pathwaytoimproveinflammationoxidativestressandneuronalapoptosisfollowingcerebralischemiareperfusioninjury |
_version_ |
1714761078028632064 |