Thermal Storage Using Metallic Phase Change Materials for Bus Heating—State of the Art of Electric Buses and Requirements for the Storage System

Battery-powered electric buses currently face the challenges of high cost and limited range, especially in winter conditions, where interior heating is required. To face both challenges, the use of thermal energy storage based on metallic phase change materials for interior heating, also called ther...

Full description

Bibliographic Details
Main Authors: Werner Kraft, Veronika Stahl, Peter Vetter
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/11/3023
Description
Summary:Battery-powered electric buses currently face the challenges of high cost and limited range, especially in winter conditions, where interior heating is required. To face both challenges, the use of thermal energy storage based on metallic phase change materials for interior heating, also called thermal high-performance storage, is considered. By replacing the battery capacity through such an energy storage system, which is potentially lighter, smaller, and cheaper than the batteries used in buses, an overall reduction in cost and an increase of range in winter conditions could be reached. Since the use of thermal high-performance storage as a heating system in a battery-powered electric bus is a new approach, the requirements for such a system first need to be known to be able to proceed with further steps. To find these requirements, a review of the relevant state of the art of battery-powered electric buses, with a focus on heating systems, was done. Other relevant aspects were vehicle types, electric architecture, battery systems, and charging strategies. With the help of this review, requirements for thermal high-performance storage as a heating system for a battery-powered electric bus were produced. Categories for these requirements were the thermal capacity and performance, long-term stability, mass and volume, cost, electric connection, thermal connection, efficiency, maintenance, safety, adjustment, and ecology.
ISSN:1996-1073