Influence of longitudinal reinforcement on the punching shear resistance of reinforced concrete slabs

This work presents the results of experimental tests on reinforced concrete slabs with different longitudinal reinforcement ratio ρ under concentrated load. Five series of specimen were made and tested, a total of ten slabs. The measurements of the specimens were 2135×2135×140 mm (Fig. 3). Longitud...

Full description

Bibliographic Details
Main Authors: Dainius Šakinis, Povilas Vainiūnas
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2009-06-01
Series:Engineering Structures and Technologies
Subjects:
Online Access:https://www.bme.vgtu.lt/index.php/EST/article/view/7536
Description
Summary:This work presents the results of experimental tests on reinforced concrete slabs with different longitudinal reinforcement ratio ρ under concentrated load. Five series of specimen were made and tested, a total of ten slabs. The measurements of the specimens were 2135×2135×140 mm (Fig. 3). Longitudinal reinforcement ratio ρ = 0,449–1,90 %, the diameter of reinforcing bars was 8–16 mm, reinforcement bore yield stresses, spacing between bars was 100 mm. The protective concrete layer of the longitudinal reinforcement in all slabs was 20 mm. The cubic compressive strength of concrete fc,cube = 33,4–46,6 MPa. In the course of the experiment the measurements of the collapsing punching force, the radial and tangential deformations of the compression zone were made, the curves of their expansion were given, displacements of the column head were measured. The surface of the punching cone, irrespective of the longitudinal reinforcement ratio ρ, makes a ˜35° angle with the bottom (compression zone) surface of the slab. Deformations of radial and tangential directions in the compression zone during the course of cracking of the slab do not reach the ultimate compressive strains of concrete (3,50 ‰), the mean value of deformations in the radial direction is 1,6 ‰, the mean value of deformations in the tangential direction is 1,8 ‰, which allows to make a conclusion that the slab is punched-through under transverse collapsing force. The strength criterion of biaxial stress state proposed by Zalesov et al. (1973) and the expression of the resultant transverse force of the dowel action of the longitudinal reinforcement ratio ρ as proposed by Theodorakopoulos et al. (2002), were used to get the expression of the collapsing transverse force Vu which is given in equation (2). The factor of the influence of longitudinal reinforcement ratio ρ expressed through the resultant transverse force Vd of the dowel action makes 40–50 % of the collapsing force, Vd increases with increasing of the longitudinal reinforcement ratio ρ. The resultant transverse force Vc of the compression zone of concrete in the critical section makes 50–60 % of the collapsing force, Vc increases with increasing of the longitudinal reinforcement ratio ρ. Išilginio armavimo poveikis gelžbetoninės plokštės praspaudžiamajai laikomajai galiai Santrauka Šiame darbe pateikti gelžbetoninių plokščių su skirtingu išilginio armavimo intensyvumu ρ, veikiant sutelktajai apkrovai, eksperimentinių tyrimų rezultatai. Išmatuota gelžbetoninių plokščių ardomoji pra spaudžiamoji jėga. Išmatuotos plokščių gniuždomosios zonos radialinės ir tangentinės krypties deformacijos, pateiktos šių deformacijų kreivės. Nustatyta, kad praspaudimo kūgio paviršius, nepriklausomai nuo išilginio armavimo intensyvumo ρ, sudaro su plokštės apatiniu (gniuždomu) paviršiumi ˜35° kampą. Išanalizavus radialinių ir tangentinių deformacijų kreives, siūloma faktinį kritinį pjūvį priimti ˜0,5d atstumu nuo kolonos paviršiaus. Išilginio armavimo intensyvumo ρ įtakos faktorius, išreikštas kaiščio efekto atstojamąja skersine jėga Vd, sudaro 40–50 % ardomosios jėgos. First Published Online: 16 May 2013 Reikšminiai žodžiai: gelžbetoninių plokščių praspaudimo stipris, kritinis pjūvis, kritinis perimetras, išilginio armavimo intensyvumas ρ, kaiščio efektas
ISSN:2029-882X
2029-8838