Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
Abstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016-04-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-016-1071-7 |
Summary: | Abstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$ is bounded above by n 2 $n^{2}$ . |
---|---|
ISSN: | 1029-242X |